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This mama1 i s  a d e f i n i t i v e  d e s c r i p t i o n  of the  BLISS language a s  

implemented f o r  the  PDP-10. BLISS i s  a language s p e c i f i c a l l y  designed f o r  

w r i t i n g  software systems such a s  compilers and opera t ing  systems fo r  t h e  

PDP-10, While much of the  language i s  r e l a t i v e l y  "machine independent" and 

could be implemented on another  machine, t h e  PDP-10 was always p re sen t  i n  

our minds during the  design,  and a s  a r e s u l t  BLISS can be implemented very 

e f f i c i e n t l y  on the 10. This i s  probably not  t r u e  f o r  o ther  machines. 

We r e f e r  t o  BLISS a s  an "implementation language", This  phrase has  

became q u i t e  popular l a t e l y ,  b u t  apparent ly  does nb t  have a uniform meaning. 

Hence i t  i s  worthwhile t o  expla in  what we mean by the  phrase and consequently 

what our ob jec t ives  were i n  the  language's design. To us t h e  phrase "imple- 

mentation language" connotes a h igher  l e v e l  language s u i t a b l e  f o r  w r i t i n g  

product ion  software;  a t r u l y  successfu l  implementation language would 

completely remove the  need and/or d e s i r e  t o  w r i t e  i n  assembly language, 

Furthermore, t o  us,  an implementation language need no t  be machine inde- 

pendent-gin f a c t ,  f o r  reasons of e f f i c i e n c y ,  i t  i s  un l ike ly  t o  be. 

Many reasons have been advanced f o r  the  use of a h igher  l e v e l  language 

f o r  implementing software. One of t h e  most o f t en  mentioned i s  t h a t  of speed- 

i ng  up i t s  production. This  w i l l  undoubtedly occur,  but  i t  i s  one of t h e  l e s s  

important b e n e f i t s ,  except  i n so fa r  a s  i t  permits  fewer, and b e t t e r  program- 

mers t o  be uqed, Far more important,  we be l ieve ,  a r e  t h e  b e n e f i t s  of docu- 

mentat ion,  c l a r i t y ,  co r r ec tnes s  and mod i f i ab i l i t y .  These were t h e  most 

important goa l s  i n  the  design of BLISS, 

Some people,  when d iscuss ing  the  sub jec t  of implementation languages, 

have suggested t h a t  one of t he  e x i s t i n g  languages, such a s  PL/I, or a t  most 



a d e r i v a t i v e  of one, should be used; they argue t h a t  t h e r e  i s  a l ready  a pro- 

l i f e r a t i o n  of languages,  s o  why add another .  The only r a t i o n a l  excuse f o r  

t h e  c r e a t i o n  of y e t  another  new language i s  t h a t  e x i s t i n g  languages a r e  

unsu i t ab l e  f o r  the s p e c i f i c  a p p l i c a t i o n s  i n  mind. I n  t h e  sense  t h a t  a l l  

languages a r e  s u f f i c i e n t  t o  model a Turing machine, any of t h e  e x i s t i n g  

languages,  LISP f o r  example, would be adequate a s  an implementation language. 

However, t h i s  does no t  imply t h a t  each of t he se  languages would be equa l ly  

convenient.  For example, FORTRAN can be used t o  wr i t e  l i s t  process ing  pro- 

grams, bu t  t h e  l ack  of r ecu r s ion  coupled wi th  t h e  requirement  t h a t  t h e  pro- 

grammer code his own p r i m i t i v e  l i s t  manipulat ions and s to rage  c o n t r o l  makes 

FORTRAN v a s t l y  i n f e r i o r  t o ,  say ,  LISP f o r  t h i s  type of programming. 

What, then,  a r e  t h e  cha rac t e r  i s  t i c s  of s y s  terns programming which should 

be r e f l e c t e d  i n  a language e s p e c i a l l y  s u i t e d  f o r  t h e  purpose? Ignor ing  

machine dependent f e a t u r e s  (such a s  a s p e c i f i c  i n t e r r u p t  s t r u c t u r e )  and 

recogniz ing  t h a t  a l l  d i f f e r e n c e s  i n  such programming c h a r a c t e r i s t i c s  a r e  

only ones of degree,  t h r ee  f e a t u r e s  of systems programming s t and  out:  

1.  Data s t r u c t u r e s ,  I n  no o the r  type of programming does t h e  

v a r i e t y  of d a t a  s t r u c t u r e s  nor t h e  d i v e r s i t y  of opt imal  

r e p r e s e n t a t i o n s  occur.  

2.  Cont ro l  s t r u c t u r e s ,  P a r a l l e l i s m  and time a r e  i n t r i n s i c :  

p a r t s  of t he  programming system problem.* 

3 .  Frequent ly ,  systems programs cannot presume t h e  ex i s t ence  

of l a r g e  support  r o u t i n e s  ( fo r  dynamic s to rage  a l l o c a t i o n ,  

f o r  example) . 
* 
Of course ,  p a r a l l e l i s m  and time a r e  i n t r i n s i c  t o  real time programming 

as wel l .  



These are the p r i n c i p a l  c h a r a c t e r i s t i c s  which the  design of BLISS 

a t tempts  t o  address .  For example, t ak ing  p o i n t  ( 3 ) ,  the  language was 

designed i n  such a way t h a t  no system support i s  presumed or needed, 

even though, f o r  example, dynamic s torage  a l l o c a t i o n  .is provided. Thus, 

code generated by t h e  campiler can be executed d i r e c t l y  on a "bare" 

machine. Another example, taking p o i n t  ( I ) ,  i s  the  d a t a  s t r u c t u r e  d e f i n i -  

t i o n  f a c i l i t y .  BLISS con ta ins  no i m p l i c i t  d a t a  s t r u c t u r e s  (and hence no 

presumed r ep resen ta t ions  f o r  s t r u c t u r e s ) ,  bu t  r a t h e r  provides a method 

f o r  de f in ing  a r ep re sen ta t ion  by g iv ing  the  e x p l i c i t  access ing  algori thm. 

One f i n a l  po in t  before proceeding wi th  the  d e s c r i p t i o n  of t he  lan-  

guage--namely, the  method of syntax s p e c i f i c a t i o n ,  The syntax i s  given 

i n  BNF, f o r  example 

escapeexpression + EXITBLOCK escapeexpressionl EXITLOOP escapeexpression 

escapeexpression + ( e 

where: (1) lower case  words a r e  me ta l ingu i s t i c  v a r i a b l e s ,  and (2) t he  

'emptyt cons t ruc t  i s  represented by a blank (as  i n  the  f i r s t  a l t e r n a t i v e  

of t he  second r u l e  above). 

iii 
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I. LANGUAGE DEFINITION 

1.. 1 Modules 

A module i s  a program element which may be  compiled independent ly of 

o t h e r  elements and subsequently loaded w i t h  them t o  form a c~omplete program. 

module -., MODULE name (parameters) = e ELIlDOM 

A module may request access  t o  other modules ' v a r i a b l e s  and func t ions  by 

decla.ring thei . r  names i n  EXTERNAL dec l a ra t~ lons .  A modu'le p e r ~ n i  t.s gene ra l  

use of i t s  own v a r i a b l e s  and ROUTINES by means o f  GLOBAL decl.ara.tions. 

These l i n e s  of communicati.on between modules a r e - l i n k e d  by the l oade r  p r i o r  

t o  execution. A complete program c o n s i s t s  of a se t  of compi:Led modules 

l inked  by t h e  loader .  

The 'name' i n  a module d e c l a r a t i o n  i s  used t o  identify t h a t  module 

and must be  unique i,n i t s  f i r s t  four characters from any o t h e r  g loba l  

names which are t o  be l inked toge ther  t o  form a conlplete program. The 

'parameters' f i e l d  of a  module d e f i n i t i o n  i s  used t o  c o n t r o l  t he  compila- 

t i o n  ( s m  s e c t i o n  1 1 . 1 . 4 ) .  See s e c t i o n  I V - 1 . 3  for o the r  uses  of t h e  module 

name. 



1,2 Blocks and Comments 

A block i s  an a r b i t r a r y  number of dec la ra t ions  followed by an a r b i -  

t r a r y  number of expressions a l l  separated by semicolons and enclosed i n  a 

matching begin-end o r  ' ( '  - '  ) ' pa i r .  

block + BEGIN blockbody END ( (blockbody) 

compoundexpression + B E G I N  express ionsequence END I (express ionsequence) 

blockbody -, dec la ra t ions ;  expressionsequence 

dec la ra t ions  -+ dec la ra t ion  1 dec la ra t ion ;  dec la ra t ions  

expressionsequence -+ I e 1 e ;  expressionsequence 

comment + I ! r e s t o f l i n e  endoflinesymbol) st;ingwithnopercent 46 

Comments may be enclosed between the symbol ! and the  end of the  l i n e  on 

which the  ! appears. However, a ! may appear i n  the  quoted s t r i n g  of a 

l i t e r a l ,  or between two )& symbols, without being considered the  beginning 

of a comment. Likewise, a )& enclosed wi th in  quotes w i l l  be considered p a r t  

of a s t r i n g .  

A s  i n  Algol t h e  block ind ica t e s  the  l e x i c a l  scope of t he  names declared 

a t  i t s  head, However, i n  c o n t r a s t  t o  Algol, t he re  i s  an exception. The 

names of GLOBAL v a r i a b l e s  and ROUTINES have a scope beyond the  block and 

although they a r e  declared wi th in  the module, the  e f f e c t ,  f o r  a module 

c i t i n g  them i n  an EXTERNAL declara t ion ,  i s  a s  i f  they were declared i n  the  

cu r ren t  block, This v i o l a t i o n  of block s t r u c t u r e  has implicat ions with 

respec t  t o  allowed references ,  p a r t i c u l a r l y  i n  connection with dec:lared 

r e g i s t e r s .  These impl ica t ions ,  and a corresponding s e t  of r e s t r i c : t i ons ,  

w i l l  be discussed i n  connection with the  a f f ec t ed  dec lara t ions .  



1.3 Literals 

The basic data element is a PDP-10 36 bit word. However, the hard- 

ware provides the capability of pointing to an arbitrary contiguous field 

within a word and so a 36 bit word may be regarded as a special case of 

the "partial word". Literals are normally converted to a single word. 

literal -. number 1 quotedstring I p l i t  

number + decimal 1 octal 1 floating 

decimal -r digit I decimal digit 
octal + # oit I octal oit 
floating + decimal.decima1 1 decimal .decimal exponent 1 decimal. exponent 
exponent + E decimal I E + decimal 1 E - decimal 
digit + 01112 --- 19 
oit - 0(112 --- 17 

3 6 
numbers (unsigned integers) are converted to binary modulo 2 residue 

35 -2 . The binary number is 2's complement and is signed. Octal constants 

are prefixed by the sharp sign, #. Floating numbers must have an embedded 

decimal point and no embedded blanks! 

quotedstring + leftad justedstring I rightad justedstring 
leftadjustedstring -, 'string' 

rightad justedstring 4 "string" 

Quoted-string literals may be used to specify bit patterns corresponding to 

the 7-bit ASCII code for visable graphic characters on the external I/O 

media. Two types of single-word strings are provided for left or right 



j u s t i f i c a t i o n  of  the s tr ing  within a word. Normally quoted stri-ngs are 

l imited to  f i v e  characters and the unused b i t  pos i t ions  are f i l l e d  with 

zeroes. 

Within a quoted s tr ing  the quoting character i s  represented by two 

successive occurrences of that character. 



1.3.1 Pointers to Literals - "plitUs 
A plit is a ~ointer to a literal word whose contents are specified at 

compile time; e.g., plit 3 is a pointer to a word whose contents will be 

set to 3 at load time. 

plit 4 plit plitarg 
Jc 

plitarg 4 load-the-expression I 
long-string I 
triple 

triple 4 (triple-item-list) 

triple-item-list triple-item 1 triple-item, triple-item-list 
triple-item load-time-expression 1 

long-string ( 
duplication-factor: plitarg 

duplication-factor + compile-time-expression 

* 
Note: "plit (3)+4" has 2 parses: plit load-time-expression 

and plit triple + expression 
The latter choice is used. Hence, "plit (3)$4" is the same 

as "(plit 3)+4". 

A plit may point to a contiguously stored sequence of literals - 
long strings and nested lists of literals are also allowed. The value of 

plit (3,5,7,9) 

is a pointer to 4.contiguous words containing 3,5,7 and 9 respectively. 

A long string (> 5 characters) is also a valid argument to a plit: 

plit 'THIS ALLOCATES 5 WORDS' 



a l l o c a t e s  5 words of 7 - b i t  ASCII cha rac t e r s  w i th  3 pad c h a r a c t e r s  o f  ze ro  
3 

t o  t h e  r i g h t  and t h e  last  b i t  turned on, 

The arguments t o  p l i t s  need only be cons tan t  a t  load time; p l i t s  are 

themselves l i t e r a l s ,  thus nes t i ng  of p l i t s  i s  allowed (with the i n n e r  p l i t s  

a l l o c a t e d  f i r s t ) :  

ex t e rna l  A,B ,C ;  

bind y = p l i t  (A ,  p l i t  ( B , )  , p i t  3 ,  ' A  LONG STRING' , 5+9*3) ; 

i s  such t h a t :  

.Y[O] = A<o,36>; . - y [ l ]  = K0,36>; . ( , y [ l ]+ l )  = ~<0, ,36> 

**yC2I = 3 ;  .y[3] = ' A  LON'; . y [ 4 ]  = 'G STR';  ,y[5] = 1 1 ~ ~ '  - or 1; 

In  a d d i t i o n ,  any argument t o  a p l i t  can be r e p l i c a t e d  by spec i fy ing  

t h e  number of times i t  i s  t o  be repea ted ;  e.g. 

p l i t  (7:3) 

produces a p o i n t e r  t o  7 contiguous words, each of which contai.ns t h e  va lue  3. 

Duplicated p l i t s  a r e  a l l o c a t e d  once, i d e n t i c a l  p l i t s  a r e  not  pooled - hence, 

bind x = p l i t  (3:  p l i t  A, p l i t  A,  2 :  (2 ,3) ) ;  - 

i s  such t h a t :  

Note: t h e  l eng th  of every p l i t  ( i n  words) i s  s to red  as t h e  word preceding 

t h e  p l i t .  Hence, i n  t h e  l a s t  example, .x [ - l ]  = 8. 



1.4 Names 

Syn tac t i ca l ly  an i d e n t i f i e r ,  o r  name, i s  composed of a sequence of 

l e t t e r s  and/or d i g i t s ,  the  f i r s t  of which must be a l e t t e r .  Ce r t a in  names 

a r e  reserved a s  d e l i m i t e r s ,  s ee  Appendix A. Semanti.cally the  occurrence 

of a name i s  exac t ly  equivalent  t o  t h e  occurrence of a po in te r  t o  t h e  named 

item. 'fie term "pointer" w i l l  t ake  on s p e c i a l  connotat ion l a t e r  with 

respec t  t o  contiguous sub-f ie lds  (bytes)  w i th in  a word; however, f o r  the  

present  d iscuss ion  the  term may be equated wi th  "address". This i n t e r p r e -  

t a t i o n  of name i s  uniform throughout the  language and t h e r e  i s  no d i s t i n c -  

t i o n  between l e f t  and r i g h t  hand values.  Contrast  t h i s ' w i t h  Algol where a 

name usua l ly ,  but  not  always, means "contents off ' .  

The po in te r  i n t e r p r e t a t i o n  r equ i re s  a "contents of" operator,and ".I1 

has been chosen. Thus .A means Ikontents of l oca t ion  A"and . .A means 

1) contents  of t h e  loca t ion  whose name i s  s tored  i n  l o c a t i o n  A!! To i l l u s t r a t e  

the  concept,  consider  t h e  assignment expression 

p l l  + e 

This means'btore t h e  value computed from e i n t o  t h e  l o c a t i o n  whose p o i n t e r  

i s  t h e  value of pll". .  (Further  d e t a i l s  a r e  given i n  2.2.)  Thus t h e  Algol 

statement "A := B1' i s  w r i t t e n  "A + .B". It i s  impossible t o  express  i n  

Algol BLISS expressions such as :  "A + B", "A + ..E", ".A + .B", e t c .  



1.5 Poin ters  

A s  explained i n  1.4, the  value of a  name i s  a po in te r  which names a 

loca t ion  i n  memory. However, po in te r s  a r e  more genera l  than mere ad- 

d re s ses  s i n c e  they may name an a r b i t r a r y  contiguous po r t ion  of a word, and 

may, f u r t h e r ,  involve index modif icat ion and i n d i r e c t  addressing. (For 

f u l l  d e t a i l s ,  t h e  reader  should r e f e r  t o  t h e  PDP-10 System Reference 

Manual,) The most general  form of poin ter  s p e c i f i e s  f i v e  q u a n t i t i e s ;  an 

18 
example i s  Eo < E 1 , ~ , ~ , E 4 > ,  where E i s  computed modulo 2 and forms 0 

6 
t he  base word address  ( Y  f i e l d ) ;  E1,E2, a r e  computed modulo 2 and form 

the  pos i t i on ,  s i z e  f i e l d s  r e spec t ive ly  (P ,  S  f i e l d s ) ;  E i s  computed 
. 3  

4 
modulo 2 and forms the  index f i e l d  (X f i e l d ) ;  E4 i s  computed modulo 2 

and forms t h e  i n d i r e c t  address  b i t  (I  f i e l d ) .  Each of El, 5, %, E4 may 

op t iona l ly  be omitted, i n  which case  a d e f a u l t  value i s  supplied.  El,€&+ 3 
have d e f a u l t s  of 0 ,  but  $ has t h e  d e f a u l t  of 36. Thus, f o r  example, 

t he  expression 

(x+l)<,y,3> 

de f ines  a  t h r e e  b i t  f i e l d  i n  the  f i r s t  l o c a t i o n  beyond x. Th~e p o s i t i o n  

of t h i s  t h ree  b i t  f i e l d  i s  ".y" b i t s  from t h e  r i g h t  end of eh~e word. 

l oca t ion  "x" loca t ion  "x+lU 



1 .6 The "contents of" Operators 

The i n t e r p r e t a t i o n  placed on i d e n t i f i e r s  i n  B l i s s  coupled wi th  t h e  dot  

operator  discussed e a r l i e r '  allow a programmer d i r e c t  access t o ,  and con t ro l  

over,  f i e l d s  wi th in  words, t o  poin ters  t o  such f i e l d s  which a r e  themselves 

s tored  wi th in  memory, t o  chains of such poin ters ;  e t c .  Two add i t iona l  

"contents of" operat ions besides the  dot a r e  provided which a,re more e f f i -  

c i e n t  i n  c e r t a i n  cases ,  but which a re  defined i n  terms of t h e  dot  and 

poin ter  operat ions.  These operators  a r e  @ a n d \ ,  and a r e  defined by t h e  

following (where t i s  a temporary): 

Thus, both @E and \E speci fy  a f u l l  36 b i t  value. @E uses only the  r i g h t -  

most 18 b i t s  of € as  the absolute address from which t o  f e t c h  the  value. 

\E i n t e r p r e t s  the rightmost 23 b i t s  of E a s  an i n d i r e c t  b i t ,  index r e g i s t e r  

f i e l d  and base address. Whichever form i s  used, the compiler at tempts t o  

optimize t h e  code produced; thus, f o r  example, i d e n t i c a l  code is produced 

f o r  .x, @x, a n d \ x ,  i f  they occur i n  an expression. 

Suppose t h a t  t h e  assignment "X tY < 3, 15, R1, 0>;" has been executed, 

t h a t  i s  a poin ter  has been s tored  i n  X ( tha t  poin ter  has P=3, ~ ~ 1 5 ,  x=R~, 

1=0), and f u r t h e r  t h a t  r e g i s t e r  ~1 contains two. Now: 

(1) Z t. .X s t o r e s  the value of X, i.e., the poin ter ,  i n t o  Z 

(2) Z t . .X s t o r e s  the  value of the  f i f t e e n  b i t  f i e l d  (which ends t h r e e  
b i t s  from t h e  r i g h t )  on the  second word following Y i n t o  Z 

(3) Z t @ .X s t o r e s  the value of Y i n t o  Z 

(4) Z c\ .X s t o r e s  the  value of,  the  second word following Y i n t o  Z 

(5) .X t 5 s t o r e s  5 i n t o  the  re levant  f i f t e e n  b i t  f i e l d  of the  second 
word following Y 



2.1 Expressions 

Every executable form in the BLISS language (that is,ever:y form 

except the declarations) computes a value. Thus all commands are expres- 

sions and there are no "statements" in the sense of Algol or Fortran. 

In the syntax description e is used as an abbreviation for expression. 

e + simpleexpression I controlexpression 



2.2 Simple Expressions 

The semantics of simpleexpressions i s  most e a s i l y  descr ibed i n  terms 

of t he  r e l a t i v e  precedence of a s e t  of ope ra to r s ,  bu t  readers  should a l s o  

r e f e r  t o  t h e  BNF-like d e s c r i p t i o n  i n  4.1. The precedence number used 

below should be viewed a s .  an o rd ina l ,  so  t h a t  1 means f i r s t  and 2 second 

i n  precedence. I n  t he  following t a b l e  t h e  l e t t e r  € has been used t o  denote 

an a c t u a l  expression of the  appropr ia te  s y n t a c t i c  type,  s ee  4.1.  

Precedence 

1 

Exarnp 1 e 
I 

Semantics 

compoundexpression 

block I The component expressions a r e  
I evaluated from l e f t  t o  r i g h t  

and. t h e  f i n a l  va lue  i s  tha.t of 
t he  l a s t  c-o~nponent express  ion. 

EO(E1'€p*.='En) A func t ion  c a l l ,  see  3.4. 

1 name[E1,%, ... ,En] A s t r u c t u r e  access ,  s e e  3.5. 

name A po in t e r  t o  t h e  named itern, 
s ee  1.4. 

l i t e r a l  Value of the  converted l i t e r a l ,  
see  1.3. 

2 e p o i n t e r  parameters> A p a r t i a l  word p o i n t e r ,  s e e  1.5. 

Value (poss ib ly  p a r t i a l  word) 
pointed a t  by E. 

Equivalent t o  .U0.36.0.0>. 1 

Equivalent t o  . (t&)< 0,36, .t< 18,4>, ~ . tQ2, I>>. 

El s h i f t e d  1ogi .cal ly  by b i t s ;  
l e f t  i f  E p o s i t i v e ;  r i g 2  i f  

2 5 negat ive.  ( S h i f t s  a r e  modulo 256.) 

Product of E' s .  

El divided by 5. 
El modulo E2. 

Negative of E. 

Sum of f ' s .  

Difference between El and . 52 



[Note a l l  i n t e g e r  a r i t h m e t i c  i s  c a r r i e d  ou t  modulo z~~ with a r e s idue  

3 5  
of -2 . I  

precedence Examp 1 e  

El FMPR .$ 
Semantics 

F loa t ing  product of El and 5. 
Floa t ing  d i v i d e  of El by 5. 

FNEG El Floa t ing  negate  of EL. 

Floa t ing  sum of El and 5. 
Floa t ing  d i f f e r e n c e  of E and 1 E2' 

[Truth i s  represen ted  by 1, f a l s i t y  by 0.1 

b i tw i se  complement of E NOT € 

b i tw i se  and of E ' s  

b i tw i se  i n c l u s i v e  o r  of E ' s  

b i tw i se  exc lus ive  o r  of E ' s  E XOR E 

b i tw i se  equivalence of € ' a  

The value  of t h i s  express ion  i s  
i d e n t i c a l  t o  t h a t  of € 5 ,  bu t  a s  
a s i d e  e f f e c t  t h i s  value i s  s to red  
i n t o  t h e  p a r t i a l  word pointed t o  
by El; wi th  a s s o c i a t i v e  use  of +, 
t h e  assignments a r e  executed from 
r i g h t  t o  l e f t :  thus  El +- 5 + % 
means El + (5  + 5). 



There i s  no guarantee regarding the 
order i n  which a simpleexpression i s  
evaluated other than that provided by 
precedence and nesting: thus 
(R 2; @ R * ( R  3 ) )  may evaluate 
to  6 or 9. 

j 

The reader should refer to the PDP-10 reference manual for a mmplete 

def ini t ion of the arithmetic operators under various special  input value 

conditions. 



2.3.1 Control Expressions 

The controlexpressions provide sequencing control w e r  the execution 

of his program; there are five forms: 

controlexpression + conditionalexpression ( loopexpression I 
choiceexpression ( escapeexpression I cor out ineexpression 

The general goto statement has deliberately been omitted from1 the 

language to improve readability and structuring of programs. 



2.3.2 Condit ional  Expressions 

condi t iona lexpress ion  I F  e l  THEN e2 ELSE eg  

e l  i s  computed and the  r e s u l t i n g  value i s  t e s t ed .  I f  i t  i s  odd*, t h  en e2 

i s  evaluated t o  provide the  va lue  of the  cond i t i ona l  expression,  otherwise 

e i s  evaluated.  3 

condi t iona lexpress ion  +IF el THEN eq 

This form i s  equiva len t  t o  t he  IF-THEN-ELSE form with 0 r ep l ac ing  ea3. 

However, i t  does introduce the  "dangling e l se"  ambiguity. .This i s  reso lved  

by matching each ELSE t o  the  most r ecen t  unmatched !INEN a s  the  cond i t i ona l  

express ion  i s  scanned from l e f t  t o  r i g h t .  

* 
Only the  l e a s t  s i g n i f i c a n t  b i t  of e l  i s  t e s t e d ;  a zero b i t  i s  i n t e r p r e t e d  as 
f a l s e  and a one b i t  a s  t rue .  Thus any odd in t ege r  value is  i n t e r p r e t e d  a s  
t r u e  and any. even value a s  f a l s e .  



2.3.3 Loop Expressions 

The va lue  of each of t h e  s i x  loop expressions i s  - 1 ,  except when an 

EXITLOOP is  used, see  2.3.4. 

loopexpression +WHILE el DO e p  

The e l  i s  computed and t h e  r e s u l t i n g  va lue  i s  t e s t ed .  I f  i t  is odd, then 

e2 i s  computed and the  complete loopexpression is  recomputed; i f  i t  i s  &en, 

then t h e  loopexpression evalua t ion  i s  complete. 

loopexpression -+UNTIL e3 Do e2 

This form i s  equivalent  t o  the WHILE-DO form except t h a t  e l  i s  replaced by 

 NOT(^^) . 
loopexpression + D O  e2  WHILE el 

The expressions e2  ,e l  a r e  computed i n  t h a t  sequence. The value  r e s u l t i n g  

from e l  i s  t e s t e d :  i f  i t  i s  odd, then the  complete loop expression i s  

recanputed; i f  i t  i s  even, then t h e  loopexpression evalua t ion  i s  complete. 

loopexpressLon DO e2  UNTIL e3 

This form i s  equiva lent  t o  the  DO-WHILE form except t h a t  e l  i s  replaced by 

NOT (e3). 

loopexpression + I N C R  name FROM e l  TO e2 BY eg DO e4 

This i s  a s impl i f i ed  form of the  Algol 68 for-loop. The "name" i s  dec lared  

t o  be a REGISTER or a LOCAL f o r  the scope of the  loop. The expression e i s  
1 

computed and s to red  inname.  The expressions e 2  and eg a r e  computed and 

s to red  i n  unnamed l o c a l  memory which f o r  explanat ion purposes we s h a l l  name 

U2 and Ug. Any of the  phrases "FROM el1' "TO e2" or "BY e3" may be omitted-- 
3 



35 i n  which case d e f a u l t  va lues  of e l  = 0, e2 2 -1, eg = 1 a r e  supplied. 

The following loopexpression i s  then executed: 

BEGIN BECISTER name; LOCAL U2,U3; U2. + e2; U3 + e j ;  

UNTIL .name GTR . U2 DO (e4 ; name * .name + .U3) 
END 

The f i n a l  form of a loopexpression is:  

loopexpression + DECR name FROM el  TO e BY e3 DO e 2 4 

This i s  equivalent  t o  t h e  INCR-FROM-TO-BY-DO form except t h a t  t h e  f i n a l  

loop i s  replaced by 

B E G I N  REGISTER name; LOCAL U2, U3 ; U2 + e2 ; U 3  + eg ; 

UNTIL .name LSS .U2 DO (e4; name + .name - .U3) 
END 

If any of t h e  FROM, TO, o r  BY phrases a r e  omitted from a DECK expression,  

35 
d e f a u l t  values of e l  0, e2 = -2 , and ej = 1 a r e  supplied. Notice t h a t  

i n  both forms the  end condi t ion  i s  t e s t e d  before the  loop, hence t h e  loop 

i s  p o t e n t i a l l y  executed zero  o r  more times. 



2.3.4 Escape Expressions 

The various forms of escapeexpressions permit control to leave its 

current environment. They are intended for those circumstances when other 

controlexpressions would have to be contorted to achieve the desired effect. 

escapeexpression -+ environment level escapevalue I RETURN escapevalue 
environment 4 EXIT I EXITBLOCK I EXITCOMPOUND 1 EXITLOOP I EXITCOND 

EXITCASE I EXITSET I EXITSELECT 

level -4 [ [e j  

escapevalue I e 

Each of these expressions conveys to its new environment a value, say E, 

obtained by evaluating the escapevalue, which may optionally be omitted imply- 

ing € = 0. The levels field, which must evaluate to a constant, sa:y n, at 

compile time, determines the number of levels of the specified control environ- 

ment to be exited; the levels field may optionally be omitted in wh~Lch case 

one level is implied, The maximum number of levels which may be exited in 

this way is limited by the current function (routine) body or the outermost block. 

RETURN terminates the current function, or routine, with value E. 

EXITBLOCK terminates the innermost n (where n is the value of the 
"levels" field) blocks, yielding a value of E for the 
outermost one exited. 

EXITCOMPOUND terminates the innermost n compound expressions, yielding 
a value of C for the outermost one exited, 

EXITLOOP terminates the innermost n loop expressions, yielding a . 
value of f for the outermost one exited. 

EXITCOND terminates the innermost n conditional expressions, 
yielding a value of E for the outermost one exited. 

EXIT terminates the innermost n control scopes (whether blocks, 
compounds, conditionals, or loops with E as the value 

3 
of the outermost. 



EXITCASE terminates the n innernost case expressions yielding 
a value of E for the outermost of these. 

EXITSET terminates the n innermost set expressions, yielding a 
value of E for the outermost of these. 

EXITSELECT terminates the n innermost select expressions, yielding 
a value of E for the outermost of these. 



2.3.5 Choice Expressions 

choiceexpression + CASE elist OF SET expressionset TES 

elist 4 e I e, elist 
expressionset -r 1 e 1 ; expressionset I e ; expressionset 

Let us suppose that the actual e's within the elist are E1,s,e.m,E, and 

that the actual expressions within the expressionset are n,;n,;,,,;n. Then 

the expressions ll are executed in that order. The value of 

the case expression is that of 
%' 

choiceexpression -, SELECT elist OF NSET nexpressionset TESN 

nexpressionset -r I ne 1 ne; nexpressionset 

This f0.m is somewhat similar to the case expression except thist the 

expressions in the nexpressionset are not thought of as being sequentially 

numbered--instead each expression in the nexexpressionset is tagged with an 

"activation" expression. Suppose we have the following select expression 

sl3LECT El, 5, OF NSET % :  E5; €6: E,; E8: Eg; EI0: Ell TESN 

then the execution proceeds as follows: first El, 9, E3 are evaluated, 

then E4, E6, E8 and EI0 are evaluated; correspondingly E is evaluated if 5 

and only if E is equal to one of E 4 5, or E3. Similarly E 7 is evaluated 

if and only if €6 is equal to one of El, 5, or $, etc. The order of 

comparison of E4, G,  etc. is from left-to-right, and the value of the 
select expression is the last of 5,  E7, etc. to be evaluated (or -1 if 
none is evaluated). 



In place  of one of the  s e l e c t i o n  expressions, E , ,  $., e tc .  one of 

the  two reserved words OTHERWISE o r  ALWAYS may be used, e.g., "ALWAYS:E~~~. 

The expression following an "OTHERWISE:" w i l l  be executed j u s t  i n  t h e  case  

t h a t  none of the  preceding s e l e c t i o n  c r i t e r i a  were s a t i s f i e d .  The expres- 

s ion  following an "ALWAYS : " w i l l  always be executed independent of t h e  

s e l e c t i o n  c r i t e r i a .  In the  following example 

z +- SELECT .x,.y OF 

3 
OTHERWISE: € 

4 
36: E 

ALWAYS: 2 
6 

94: E 

TESN; 

1 2 
(1) E w i l l  be  executed i f  .x=1 .y=l,  then (2) E w i l l  be executed i f  

3 1 
.x;-7 or . y 7 ,  then (3) E w i l l  be executed i n  the case ne i the r  E nor 2 

4 
was executed, i .e . ,  dl, .+I, .x#7, and .y#7, then (4) E w i l l  be executed 

5 6 
i f  .x=36 - o r  .y=36, then (5) E w i l l  always be  executed, and f i n a l l y  (6) E 

w i l l  be  executed i f  .x=94 o r  .y=94. The value assigned t o  z w i l l  be 

t h a t  of i )  unless  .x=94 o r  .y=94 i n  which case the value assigned t o  z 

6 
w i l l  be t h a t  of E . 

Note t h a t  although OTHERWISE and ALWAYS may be placed i n  any nset-element,  

i t  makes no sense t o  use  more than one OTHERWISE o r  t o  use  an  OTHERWISE 

a f t e r  a n  ALWAYS s ince  i n  these  cases  the  l a t t e r  OTHERWISE'S can have no 

e f f e c t .  



2.3.6 Co-routine Expressions 

The body of a  funct ion  o r  rout ine  may be ac t iva t ed  a s  a co-rout ine 

and/or asynchronous process ; t h e  add i t iona l  syntax is  

coroutineexpression + CREATE el ( e l i s t )  AT e2 LENGTH ej THEN e4 ( 
EXCHJ (e6 , e,) 

The e f f e c t  of a  ' c rea te"  expression i s  t o  c r e a t e  a context ,  tha, t  i s  

an independent s tack ,  f o r  the  rou t ine  (funct ion)  named by e l ,  w i th  para- 

meters spec i f i ed  by the e l i s t ,  a t  the  loca t ion  whose address  is  spec i f i ed  by ep and of 

s i z e  e words. Control then passes t o  t h e  s tatements  following t h e  ' c r e a t e ' .  When 3 

two or more such contexts  have been e s t ab l i shed ,  con t ro l  may be passed from 

any one t o  any o the r  by executing an exchange-jump, EXCHJ (%, e7f where the  

value of e6 must be the  s t a c k  base, e2, I of a previous c r e a t e '  expression.  

The value of e;, is  made ava i l ab le  t o  the  c a l l e d  rou t ine  as the  value of i t s  

own EXCHJ which caused con t ro l  t o  pass out of t h a t  rou t ine .  Thus the  

value of t h e  EXCHJ opera t ion  i s  defined dynamically by t h e  co-rout ine which 

JcJc 
a t  some l a t e r  time r e - a c t i v a t e s  execution of the  cu r ren t  co-rout ine,  

Should a  process,  the  body of which is  necessa r i ly  t h a t  of a  funct ion  

(or  rou t ine ) ,  execute a  ' r e t u r n ' ,  e i t h e r  e x p l i c i t l y  o r  i m p l i c i t l y ,  t he  ex- 

p re s s ion  e  (fol lowing the  ' then '  i n  t h e  ' c r e a t e 1  expression of t h e  c r e a t i n g  4 

process) i s  ex,ecuted i n  the  context  of the  c rea ted  process,  The normal 

r e s p o n s i b i l i t i e s  of e4 include making the  s t a c k  space used f o r  the  c rea ted  

contex,t  a v a i l a b l e  fo r  o ther  uses and performing an EXCHJ t o  some o the r  

process.  

The f a c i l i t i e s  described above, namely ' c r e a t e '  and 'exchj ' , a r e  

adequate e f t h e r  f o r  use d i r e c t l y  a s  co-rout ine l inkages or  fo r  use a s  primi- 

t i v e s  i n  cons t ruc t ing  more soph i s t i ca t ed  co-rout ine f a c i l i t i e s  wi th  malcros 
Jc 

Note t h a t  t h e  1st EXCHJ t o  a  newly crea ted  process causes con t ro l  t o  e n t e r  
from i t s  head wi th  a c t u a l  parameters a s  s e t  up by the  CRJiATE. 
JcJc 

The value e7 i s  not  a v a i l a b l e  t o  the  c a l l e d  r o u t i n e  on the  1st EXCHJ t o  it. 



and/or procedures. It should be noted i n  the context t h a t  i f  the created 

processes are  functions ( ra the r  than routines)  the r e s u l t i n g  processes con- 

t inue  t o  have access t o  l ex ica l ly  global  var iables  which may be loca l  t o  an 

embracing function (access t o  l ex ica l ly  local  var iables  which have been 

declared 'own' is  avai lable  i n  e i t h e r  case) .  In  such a  case the r e s u l t i n g  

s t ruc tu re  i s  a s tack t r e e  i n  which a l l  segments of the  t r e e  below the  

l e x i c a l  level  of the (function) process are  avai lable  t o  i t .  

Two addi t ional  complexities a re  added i f  the  c rea te  and exchj 

a r e  t o  be used fo r  asynchronous, and possibly p a r a l l e l ,  execution of pro- 

cesses. One is  synchronization, by which we man a mechanism by which a  

process can coordinate i t s  execution with t h a t  of one or more others.  A 

typ ica l  example of the need fo r  synchronization occurs when two processes, 

independently update a common data base, and each must be sure t h a t  the 

e n t i r e  updating process i s  complete t e f o r e  any other process attempts t o  

use the  data base. The second complexity a r i s e s  i n  connection with in te r -  

rupts ,  and i n  pa r t i cu la r  from the  f a c t  t h a t  c e r t a i n  operations must not be 

in ter rupted (some exchj operations f o r  example). It i s  possible t h a t  cer- 

t a i n  s i t u a t i o n s  require synchronization mechanisms but do not need t o  be 

concerned about the  in te r rup t  problem--as for  example, a  user program with 

asynchronous processes, which i s  'bl ind '  t o  in te r rup t s ,  and which some 

monitor systems view as  a  s ing le  ' job ' .  

The nature of "appropriate" synchronization primit ives and mechanisms 

f o r  temporarily bl inding the processor t o  i n t e r r u p t s  (or i n t e r r u p t s  i n  a 

c e r t a i n  c lass)  a re  highly dependent upon the nature of the processes being 

used and the operating system, or lack of one, underlying the B l i s s  program. 

As a  consequence, no syntax fo r  dealing with e i t h e r  problem i s  included i n  



the language; in any case, the amount of code necessary for these facillities 

is quite small. 

The co-routine user is well advised to read and understand the material 

on the run-time representation of Bliss programs contained in section ICV. 



3.1 Declarations 

A11 declarations, except MAP and SWITCH, introduce names each of 

which is unique to the block in which the declaration appears. Except 

with STRUCTURE and MACRO declarations, the name introduced has a pointer 

bound to it. 

me declarations are: 

declaration functiondeclaration( s truc turedeclaration1 

binddeclarationlmacrodeclarat ion1 

allocationdeclaration 1 mapdeclaration 

Before proceeding with a detailed discussion of the declarations 

we shall give an intuitive overview of the effect of these declarations. 



3.1 , l  Storage (an i n t roduc t ion )  

A B l i s s  program ope ra t e s  with and on a  number of s t o r a g e   segment^'^. 

A s t o r a g e  segment c o n s i s t s  of a f i xed  and f i n i t e  number of "words", each 

of which i s  composed of a  f i xed  and f i n i t e  number of "b i t s "  (36 f o r  the 

PDP-10). Any contiguous s e t  of b i t s  w i t h i n  a word i s  c a l l e d  a "fieldI1. 

Any f i e l d  may be "named", t h e  value of a  name i s  c a l l e d  a "pointerIt  t o  

t h a t  f i e l d .  I n  p a r t i c u l a r ,  an e n t i r e  word i s  a f i e l d  and may be  named. 

I n  p r a c t i c e  a segment gene ra l l y  conta ins  e i t h e r  program o r  d a t a ,  

and i f  t h e  l a t t e r ,  i t  i s  gene ra l l y  f n t e g e r  numbers, f l o a t i n g  p o i n t  numbers, 

c h a r a c t e r s ,  o r  p o i n t e r s  t o  o t h e r  da t a .  To a  Bliss program, however, a  

f i e l d  merely con ta in s  a  p a t t e r n  of b i t s .  

Segments a r e  introduced i n t o  a Bliss program by d e c l a r a t i o n s ,  c a l l e d  

a l l o c a t i o n  d e c l a r a t i o n s ,  f o r  example: 

g loba l  g;  

own x ,y  [51, 2; - 
l o c a l  p  [ loo] ;  

r e g i s t e r  r l ,  r 2  [3 ] ;  

func t ion  f ( a , b )  = . a t .b ;  

Each of  t h e s e  d e c l a r a t i o n s  in t roduces  one o r  more segments and b inds  t h e  

i d e n t i f i e r s  mentioned (e -g . ,  g ,  x, y ,  e tc . )  t o  t h e  name of t h e  f i r s t  

word of  t h e  a s s o c i a t e d  segment. (The func t ion  d e c l a r a t i o n  a l s o  i n i t i a l i z e s  

t h e  segment named "f t l  t o  t h e  app rop r i a t e  machine code. ) 

The segments introduced by these  d e c l a r a t i o n s  con ta in  one o r  more 

words, where t h e  s i z e  may be  s p e c i f i e d  (as  i n  " loca l  p[100]"), o r  de fau l t ed  

t o  one ( a s  i n  "global  g;"). The i d e n t i f i e r s  introduced by a dec1arat:ion 



are lexically local to the block in which the declaration is made (that 

is, they obey the usual Algol scope rules) with one exception - namely, 
"global" identifiers are made available to other, separately compiled 

modules. Segments created by own, global, and function declarations are 

created only once and are preserved for the duration of the execution of 

a program. Segments created by local and register declarations are, created 

at the time of block entry and are preserved only for the duration of the 

execution of that block. Register segments differ from local segments only 

in that they are allocated from the machine's array of 16 general purpose 

(fast) registers. Re-entry of a block before it is exited (by recursive 

function calls, for example) behaves as in Algol, that is, local and 

register segments are dynamically local to each incarnation of the block. 

There are two additional declarations whose effect is to bind identi- 

fiers to names, but which do not create segments; examples are: 

external s; 

b ind - y2 = y+2, pa = p+.a; 

An external declaration binds one or more identifiers to the names 

represented by the same identifier declared ~lobal in another, separately 

compiled module, The bind - declaration binds one or more identifiers to 
the value of an expression at block entry time. At least potentially the 

value of this expression may not be calculable until run time - as in 
'pa = p+.a ' above. 



3.1.2 Data Structures (an introduction) 

Two principles were followed in the design of the data etructure 

facility of Bliss: 

- the user must be able to specify the accessing algorithm 
for elements of a structure, 

- the representational specification and the specification 
of algorithms which operate on the information represented 

must be separated in such a way that either can be modified 

without affecting the other, 

The definition of a class of structures, that is, of an accessii~g 

algorithms to be associated with certain specific data structures, may be 

made b> a declaration of somewhat the following form: 

structure <name>[<formal parameter list>] = E 

Particular names may then be associated with a structure class, that is 

with an accessing algorithm, by another declaration of somewhat the form: 

Consider the following example: 

begin 

structure ary2 [i, j] = (.ary2+(.iW1)*10+(. j-1)) ; 

own x[lOO],y[10O],z[100]; - 
map ary2 x : y : z ;  

end : 



In  t h i s  example we introduce a  very simple s t r u c t u r e ,  ary2,  f o r  two dimen- 

s iona l  (10x10) a r r a y s ,  dec l a re  t h r e e  segments wi th  names ' x ' ,  'y', and 

'2' bound t o  them, and a s s o c i a t e  the  s t r u c t u r e  c l a s s  ' a ry2 '  wi th  t hese  

names. The s y n t a c t i c  forms "x[E1, $1'' and "y[%, $1'' a r e  v a l i d  w i th in  

t h i s  block and denote eva lua t ion  of t h e  access ing  a1,gorithm def ined  by t h e  

a ry2 - s t ruc tu re  d e c l a r a t i o n  (with an  appropr i a t e  s u b s t i t u t i o n  of a c t u a l  f o r  

formal parameters).  

Although they a r e  not  implemented i n  t h i s  way, f o r  purposes of exposi-  

t i o n  one may th ink  of t he  s t r u c t u r e  d e c l a r a t i o n  a s  de f in ing  a  func t ion  wi th  

one more formal parameter than i s  e x p l i c i t l y  mentioned. For example, t he  

s t r u c t u r e  d e c l a r a t i o n  i n  t h e  previous example, 

s t r u c t u r e  ary2 [i, j] = (. ary2+(, i-l)*lO+(, j-1)) ; 

conceptual ly i s  i d e n t i c a l  t o  a  func t ion  d e c l a r a t i o n  

func t ion  ary2 ( f O Y f l , f 2 )  = ( . f~+( . f l -1)*10+( .  f2-1)) ; 

The expressions "x[.a, .b]" and "y[.b, .a]" correspond t o  c a l l s  on t h i s  

func t ion  - i. e .  , t o  "ary2 (x,  . a , .  b)"  and "ary2 (y , . b y .  a)". 

Since, i n  a  s t r u c t u r e  d e c l a r a t i o n ,  t h e r e  i s  an i m p l i c i t ,  un-named 

formal parameter,  t h e  name of  t he  s t r u c t u r e  c l a s s  i t s e l f  i s  used t o  denote 

t h i s  "zero-th" parameter. This convention maintains  the  p o s i t i o n a l  cor -  

respondence of a c t u a l s  and formals. Thus, i n  t h e  example above, ".ary2" 

denotes the  value of  t h e  name of the  p a r t i c u l a r  segment being referenced,  

and 'x [ .a , .b I1  i s  equiva len t  to :  



The value of t h i s  expression i s  a  po in te r  t o  the  designated element of 

the  segment named by x. 

In  the  following example the  s t r u c t u r e  f a c i l i t y  and bind dec la ra t ion  
10 

have been used t o  encode a mat r ix  product ( z  = C xikykJ). In  t h e  
i ' j  ,, 

inner  block the  names ' x r '  and 'yc '  a r e  bound t o  po in te r s  t o  t h e  base of 

a  spec i f i ed  row of x and column of y respec t ive ly .  These i d e n t i f i e r s  

a r e  then assoc ia ted  with s t r u c t u r e  c l a s s e s  which allow one-dimensional 

access.  

begin 

s t r u c t u r e  ary2 [i, j ]  = (.aryZ+(.i-l)*lO+.(. j - I ) ) ,  

own - 
co l  [j] = (.col+(.  j-l)*lO) ; 

m a p  ary2 x:y:z; . 
i n c r  i from 1 to 10 do - 

begin bind x r  = x [ . i , l ] ,  zr = z [ .L , l ] ;  map row x r : z r ;  

i n c r  j from 1 to 10 do - - 
begin 

r e g i s t e r  t ;  bind yc=y[l , .  j]; map c01 yc; 

t +- 0; 

i n c r  k from 1 t o  10 t 4- .t+.xr[.k]*.yc[.k]; - - -  
z r [ .  j ]  .- . t ;  

end : 

end -' 

end - 



3.1.3 The Actual Declaration Syntax 

The evample declarations in the preceding two sub-sections are valid 

Bliss syntax; however, they do not reflect the complete power of the 

declarative facilities. The following sections (3.2 - 3.5) are definitive 

presentations of the actual syntax and semantics of these declarations. 

The actual declarations presented in the following sections differ from 

the examples given previously in that they admit greater interaction 

between the allocation declarations and structure declarations. 



3.2 Memory Allocation 

There are five basic forms of allocation declaration: 

allocation declaration -+ allocatetype msidlist 

allocatetype -+  GLOBAL^ REGISTERIOWNI LOCALIEXTERNAL 

msidlis t + msidelement 1 msidelement , msidlis t 
msidelement -+ structure sizedchunks 

structure -+ I structurename 
sizedchunks + sizedchunk ( sizedchunk: sizedchunks 
sizechunk -r idchunkl idchunk [elist] 

idchunk + name 1 name: idchunk 

As with most other declarations, the allocat-ion declarations 

introduce names whose scope is the block in which the declarations occur. 

REGISTER and LOCAL declarations cause allocation of storage at each block 

entry (including recursive and quasi-parallel ones), and corresponding 

de-allocation on block exit. Storage for OWN and GLOBAL declarations is 

made once (before execution begins) and remains allocated during the 

entire execution of the program. EXTERNAL declarations do not allocate 

storage, but cause a linkage to be established to storage declared with 

the same name in a GLOBAL declaration of another module. Space for 

allocation is taken from core for LOCAL, OWN, and GLOBAL declarations, 

and from the machine's high speed registers for REGISTER declarations. 

The initial contents of allocated memory is not defined and should 

not be presumed. 

Each msidelement defines a set of identifiers and simultaneously 

maps these identifiers onto a specified structure. (If the structure 

part is empty, the default structure 'vector' is assumed, see section 

3.5). Each sizedchunk allows, by interaction with the associated 



structure of the msidelement, spec i f icat ion of the s i z e  of the segment 

t o  be al located - and the values of the "undotted structure formals" 

to  be used i n  accessing an instance of the structure (again, see 3 . 5 ) .  



3.3 Map Declaration 

map declaration -, MAP msidlist 

The map declaration is syntactically and semantically similar to 

an allocation declaration except that no new storage or identifiers are 

introduced. The purpose of the map declaration is to permit re-definition 

of the structure and elist information associated with an identifier (or 

set of identifiers) for the scope of the block in which the map declaration 

occurs. 



3.4 Bind Declarations 

bind declaration 4 BIND equivalencelist 

equivalencelist * equivalence I equivalence, equivalencelist 
equivalence -+ msidelement = e 

A bind declaration introduces a new g e t  of names whose scope is the 

block in which the bind declaration occurs, and binds the value of these 

names to the value of the associated expressions at the time that the 

block is entered. Note that these expressions need not evaluate at 

compile time. 



3.5 Structures 

structure declaration -, STRUCTURE name structureformallist = st:ructuresize "1 
structureformallist + ( [namelist] 

structuresize -+ ( [e2] 

Structure declarations serve to define a class of data structures 

by defining an explicit "access algorithm", e to be used in accessing 
1' 

elements of that structure. The class of structures introduced by such 

a declaration is given a name which may be used as the structure name in 

an allocation declaration or map declaration. 

The names in the structure formal list are formal parameter identifiers 

which are used in two distinct ways: 

1. "dotted" occurrences of the formal names positionally correlate 

with the values of elist elements at the site of a structure 

access. (Recall that a structure access is syntactically 

pl -+ name [elist] .) These are referred to as "access formals" 

and "access actuals" respectively. 

2. "undotted" occurrences of the formal names positionally correlate 

with the Values of the elist elements at the site of the declara- 

tion which associated the variable name with the structure 

class. These are referred to as "incarnation formals" and 

"incarnation actuals" respectively. 

In addition to the explicit formal names, the structure name, in "dotted" 

form, is used as an access formal to denote the name of the specific: 

segment being accessed (that is, to denote the pointer to the base of 

the segment). 



If present, the structure size, i.e., [el, is used to calculate 

(from the incarnation actuals) the size of the segment to be allocated 

by an allocation declaration. After substitution of incarnation actuals, 

this expression must evaluate to a constant at compile time. 

The simple example of a two-dimensional array given in section 3.1.2 

might now be written: 

begin 

structure ary2[i,j] = [i*j](.ary2+(.i-l)*j3.(.j-l)); 

own ary2 x:y:z[10,10]; - . 

end: 

The default structure VECTOR, mentioned in section 3.2 is defined by 

structure vector [i] = [i] (.vector + .i); 

If defaulted, the size part of a structure declaration is defaulted 

to the product of the incarnation actuals. 



3 . 6  Functions 

func t ion  d e c l a r a t i o n  FUNCTION name (namelist)  = e 1 
FUNCTION name = e I 
ROUTINE name(name1ist) = e 1 
ROUTINE name = e 

The FUNCTION and ROUTINE dec la ra t ions  de f ine  the  name t o  be t h a t  of a poten- 

t i a l l y  r ecu r s ive  and r e -en t r an t  func t ion  whose va lue  i s  the  expression e.  

The syntax of a normal subrout ine- l ike  func t ion  c a l l  i s  

pl  + pl ( e l i s t )  I pl  ( ) 

e l i s t  + e I e l i s t ,  e 

where p l  i s  a primary expression. Clear ly ,  pl  must eva lua te  t o  a name which 

has been declared a s  a FUNCTION or ROUTINE e i t h e r  a t  compile time or at  run 

time. The names i n  t he  namelis t  of t he  dec l a ra t ion  de f ine  ( l e x i c a l l y  l oca l )  

t h e  names of formal parameters whose a c t u a l  values on each inca rna t ion  a r e  d e t e r -  

mined by the  e l i s t  a t  the  c a l l  s i t e .  A l l  parameters a r e  i m p l i c i t l y  Algol 

"call-by-value"; bu t  n o t i c e  t h a t  cal l -by-reference i s  achieved by simply pre-  

s en t ing  po in t e r  va lues  a t  t he  c a l l  s i t e .  Parentheses  a r e  requi red  a t  the  c a l l  

s i t e  even f o r  a ROUTINE or  a FUNCTION wi th  no formal parameters s ince  t h e  name 

on i t s  own i s  simply a po in t e r  t o  t h e  func t ion  or rou t ine .  Ex t r a  a c t u a l  para- 

meters a b w e  the  number mentioned i n  t he  namelis t  of t he  func t ion  (or rou t ine )  

d e c l a r a t i o n  a r e  always allowed; however, too  few a c t u a l  parameters can cause 

Jc 
erroneous r e s u l t s  a t  run  time. A ROUTINE d i f f e r s  from a FUNCTION i n  having an 

abbreviated and hence f a s t e r  prolog. Res t r i c t i on :  a r o u t i n e  may not  r e f e r  

d i r e c t l y  t o  l o c a l  v a r i a b l e s  declared ou t s ide  i t ,  nor may i t  c a l l  a FUNCTION. 

* 
Note: I f  e x t r a  parameters a r e  presented,  and say, n ate  expected, then  t h e  

0 
r ightmost  n a c t u a l  w i l l  correspond t o  the formal parameters. See s e c t i o n  I V  

f o r  d e t a i l s  of t he  access  mechanism. 



funct ion  dec la ra t ion  -1 GLOBAL ROUTINE name (namelist)  = e ( 

GLOBAL ROUTINE name = e 

A ROUTINE name i s  l i k e  an OWN name i n  t h a t  i t s  scope i s  l imi t ed  t o  the  block 

i n  which i t  i s  declared and i t s  value i s  a l ready i n i t i a l i z e d  a t  block ent ry .  

The p r e f i x  GLOBAL changes t h e  scope of t h e  ROUTINE t o  t h a t  of the outer  

block of t h e  program enveloping a l l  the modul.es, Note t h a t  t h i s  i n h i b i t s  

a  GLOBAL ROUTINE from access t o  REGISTER names declared outs ide  it. This i s  

i n  add i t ion  t o  the  other  l i m i t a t i o n s  of ROUTINES c i t e d  on the  previous page, 

Functions and rou t ines  may a l s o  be ac t iva t ed  a s  co-rout ines and/or 

asynchronous processes,  and indeed, the  body of a  s i n g l e  funct ion  may be 

used i n  .any or a l l  of these  modes simultaneously. (See 2 . 3 . 6 . )  

funct ion  d e c l a r a t i o n  -, FORWARD nameparl is t  

namepar l i s  t + namepar I namepar l i s t  , namepar 

namepar +name (e) 

>k 
FORWARD'S t e l l  t h e  compiler how many parameters,  given by e , a r e  ex- 

pected by an  undeclared funct ion  (or rou t ine )  name which w i l l  be declared 

l a t e r  i n  t h e  cu r ren t  block. The compiler permits t h e  number of a c t u a l  

parameters i n  a  funct ion  (or rout ine)  c a l l  t o  be g r e a t e r  than or equal t o  

t h e  number of formals declared.  

* 
Clear ly  e  must eva lua te  t o  a  constant  a t  compile time. 



3.7 Simple Macros 

A limited macro facility is provided to improve the usability,of the 

language. This facility provides simple replacement of a macro keyword 

(and arguments) by a suitably defined string (with appropriate actual string 

substitution for the formal parameters). Nested macro calls are permitted. 

Recursive macro calls and nested macro definitions are not permitted. 

macrodeclaration -, MACRO macdefinitionlist 

macdef initionlist + macdef inition I 
macdef initionlist, macdef inition 

macdefinition + name (namelist) = stringwithout$ $ I 1 

namep = stringwithout? $ 

The stringwithout$ is scanned for occurrences of atoms that match elements 

of the namelist (if any). The first $ terminates the macdefinition without 

except ion. 

macrocall + name (balancedstringlist) I 1 

name 2 

balancedstringlist -. balancedstring I 
balancedstringlist, balancedstring 

A balancedstring is any string for which the number of right brackets 

(11 ( t l ,  1s [ t l ,  or I 1  11 < ) in the string equals or exceeds the number of corres- 

ponding left brackets. This includes the null string. A balancedstring 

is1 associated with the formal parameter in the corresponding ordinal 

position in the macdefinition. 



Note t h a t  

1. "Extrau balancedstr ings w i l l  be  simply ignored, but  parsed 

a s  described above. 

2. Null balancedstr ings a r e  accepted. 

3.  m e  macrocall  may present  fewer ba lanceds t r ings  than the 

macrodefini t ion,  i n  which case  the n u l l  s t r i n g  w i l l  be used f o r  

t he  "missing" arguments. 

4. A macrocall  must have a b a l a n c e d s t r i n g l i s t  i f  t he  macrodefini t ion 

had a namelist .  

The expanded s t r i n g  from a macro rep laces  the  macrocall  i n  the  program 

p r i o r  t o  l e x i c a l  processing and scanning resumes a t  t he  head of t h i s  s t r i n g .  

Hence macrocalls may be nested. Indeed, p a r t s  of a "nested" c a l l  may come . 

from the  a c t u a l  parameter(s)  of the containing macro, from the  body of the  

containing macro o r  even from the  t e x t  following the  containing macro. 

A s  with o the r  dec la ra t ions ,  macros have a scope given by the  block 

i n  which they a r e  defined - with t h i s  exception: Any macro being expanded 

a t  t he  end of a block w i l l ,  i n  e f f e c t ,  be purged but i t s  expansion w i l l  run 

t o  completion. This might occur,  f o r  example, i f  a macro contained an  END a s  i n :  

BEGIN 

MACRO qQSV = END B + "TQ" $ ; 

QQSV 

END 

This may lead  t o  anomolous behavior depending on t h e  s p e c i f i c  program. 



Macros may be used t o  provide names t o  b i t  fields s o  as t o  improve 

r e a d a b i l i t y .  

MACRO EXPONENT = 27,8 $; 
MACRO MANTISSA = 0,27 $; 
MACRO SIGN = 35, l  $; 
LOCAL X ;  
X <SIGN> t 0; X aXPONENT> t 27 ; X W N T I S S A >  t. .I ; 

Macros may be used t o  extend the  syntax in a l imi t ed  way. 

MACRO NEG = 0 GTR $; 
MACRO UNLESS(X) = IF NOT(X) $; 

Macros may be used t o  e f f e c t  i n - l i n e  coding of a func t ion .  

MACRO ABS (x) = BEGIN REGISTER TEMP; 
IF NEG(TEMP + X) THEN - .TEMP ELSE .TEMP END $; 

! HER.E THE ACTUAL PARAMETER SUBSTITUTED FOR X MAY NOT INCLUDE THE 
: NAME TEMP. 



11. SPECLAL LANGUAGE FEATURES 

The previous chapter  descr ibes  t h e  bas ic  f ea tu res  of the  BLISS 

language. I n  t h i s  chapter we descr ibe  add i t iona l  f e a t u r e s  which a r e  

highly machine and itnplementation dependent. 

1.1 Special  Functions 

' A number of f ea tu res  have been added t o  the  bas i c  BLISS language which 

allow g r e a t e r  access t o  the  PDP-10 hardware fea tures .  These f ea tu res  have 

the  s y n t a c t i c  form of funct ion c a l l s  and a r e  thus r e fe r red  t:o a s  "specia l  

functions". Code f o r  spec ia l  funct ions i s  always generated i n  l i n e .  



1.2 Fharacter  Manipulation Functions 

Nine funct ions  have been spec i f i ed  t o  f a c i l i t a t e  charac ter  manipula- 

t i o n  operat ions,  They are:  

scann (ap) CopYnn (apl, ap2) 

scan i  (ap) copyni (W1, ap2) 

rep lacen  (ap, E) copyin (apl,  ap7) - 
r e p l a c e i  (ap, E) copyi i  (apl ,  ap2) 

incp (ap) 

For each of these  E i s  an a r b i t r a r y  expression, and ap i s  an expression 

whose Oalue i s  a po in te r  t o  a poin ter .  The second of these po in te r s  i s  assumed 

t o  po in t  t o  a charac ter  i n  a s t r i n g .  

scann (ap) i s  a funct ion whose va lue  i s  the  cha rac te r  from the  
s t r i n g .  

s can i  (ap) i s  l i k e  scann except t h a t ,  a s  a s ide  e f f e c t ,  the  
s t r i n g  poin ter  i s  s e t  t o  po in t  a t  t he  next  cha rac te r  
of the  s t r i n g  before the  cha rac te r  i s  scanned. 

rep lacen  (ap, €) i s  a funct ion  whose value i s  E and which, a s  a s i d e  
e f f e c t ,  rep laces  the  s t r i n g  charac ter  by E. 

r e p l a c e i  (ap, E) i s  s i m i l a r  t o  replacen except t h a t  t he  s t r i n g  poin ter  
i s  s e t  t o  po in t  a t  the  next cha rac te r  of the  s t r i n g  
before the  value of E i s  s tored .  

copynn (apl,  ap2) these  funct ions  a r e  s imi l a r  i n  t h a t  they each e f f e c t  
copyni (apl ,  ap2) a copy of one charac ter  from a source s t r i n g  (pointed 
copyin (apl,  ap2) a t  by .ap,) t o  a d e s t i n a t i o n  s t r i n g  (pointed a t  by .ap2) 
copy i i  (apl,  ap2) and have a s  value the  charac ter  copied. They d i f f e r  

i n  t h a t  copynn advances ne i the r  p o i n t e r , h i l e  copyni 
advances .ap , copyin advances .ap , and copy i i  advances 2 1 
both. I n  each case  t h e  po in te r  i s  advanced before the  
copy i s  e f f ec t ed .  

advances .ap t o  the  next  cha rac te r  



Suppose that a string (of 7 b i t  ASCII characters) i s  stored i n  memory 

beginning a t  location S .  The string i s  terminated by a nul l  (zero) 

character. The following skeletal  code w i l l  transform i t  i n t o  a 6-bit 

str ing with blanks deleted: 

begin 

register  p 7 ,  p6 ,  c ;  

p7 t- (s-1) a, ir); p6 4- (s-1) <0,6>; 

while (c c scani (p7)) neq 0 do 

if .c neq " " then replacei (p6, .c); - - 



1.3 Machine Language 

It i s  pos s ib l e  t o  i n s e r t  PDP-10 machine language i n s t r u c t i o n s  i n t o  a 

B l i s s  program i n  t h e  s y n t a c t i c  form of a s p e c i a l  f unc t ion  

OP (5 , 5, (5, E4)  

where 

op i s  one of the  PDP-10 machine language' mnemonics (see t a b l e  
below). 

El i s  an  express ion  whose l e a s t  s i g n i f i c a n t  4 b i t s  w i l l  become 
t h e  accumulator (A) f i e l d  of t h e  compiled i n s t r u c t i o n .  
This  express ion  must y i e l d  a va lue  a t  conzpile time of a 
dec la red  r e g i s t e r  name or  a l i t e r a l .  

E2 i s  an express ion  whose l e a s t  s i g n i f i c a n t  18 b i t s  w i l l  
becane the  address  (Y) f i e l d  of the  compiled i n s t r u c t i o n .  

E3 i s  an express ion  whose l e a s t  s i g n i f i c a n t  4 b i t s  w i l l  become 
the  index (x) f i e l d  of t he  compiled i n s t r u c t i o n .  

E4 i s  an expression whose l e a s t  s i g n i f i c a n t  b i t  w i l l  become 
t h e  i n d i r e c t  (I) b i t  of the compiled i n s t r u c t i o n ,  0 

(A t a b l e  of machine language i n s t r u c t i o n  mnemonics fol lows.  Defau l t s  f o r  a r e  0.) 

The 'value '  of these  machine language i n s t r u c t i o n s  i s  uniformly taken 

t o  be t h e  con ten t s  of t h e  r e g i s t e r  s p e c i f i e d  i n  t he  accumulator (A) f i e l d  

of t h e  i n s t r u c t i o n .   his makes l i t t l e  sense i n  a few cases ,  bu t  was 

adopted f o r  uniformity .) 

I n  order  f o r  t h e  compiler t o  conserve space dur ing  compilat ion,  t h e  

mnemonics f o r  t he  machine language opera tors  a r e  not  normally preloaded 

i n t o  t h e  symbol t ab l e .  Therefore,  i n  order  t o  use  t h i s  f e a t u r e  of t he  

language, i t  i s  necessary f o r  the  programmer t o  inc lude  one of t h e  follow- 

i n g  s p e c i a l  d e c l a r a t i o n s  

d e c l a r a t i o n  +MACHOP mlist 1 ALLM&HOP 

mlist + name = e ( m l i s t  , name = e 

i n  the  head of a block which embraces occurrences of t he se  s p e c i a l  func t ions ,  0 



(Note: The e's in anmlist must be the high order nine bits of the actual 

values of the machine operation and must evaluate at compile time.) Symbol 

table space for these names is released when the block in which the declara- 

tion occurs is exited. 

NOTE: The description of fields $, 5, (4 needs same simplification in - 
the case where 3 is a name. The compiler attempts to produce a single 

instruction for the machine language expression whenever possible. For 

example, consider the expression MOVEM(~,A) where A is a local variable. 

The compiler, noting that the index register has been defaulted to zero, 

produces a 22 bit address using the F register for the index register field 

of the instruction. 



* 
PDP-10 Instruction Mnemonic Table 

n -- . 

- ------ ..---... - .- 

l o  I ( .  A 

1 1  

t t ,  !Iel~lury 
tc) Self 

B h c k  Transfer 

EXCHnnge AC and meriiory 
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A1111 
SUlJtracr 
M U L t ~ p l y  
I~ltegcl kIU Lt  ply 
111 Vidc. 
111 tcger 111 Vide 

t o  I l O t l l  

Floatitlg Adl) 
F'oatir\g Sr~Btract 
Floating Mult iPly to Menlory 
Roa t  ilig Divide to Both 

use present poirltcr Loall Byte into ACT 

Increment pointer 
) and ( 

Deposit Byte in nicluory 

set masked bits to Zcros and skip if all masked bits Equal 0 

Right with E set masked bits t o  Oiws if Not all masked bits equal 0 
htf with s Conlple~nen t, masked bits 

9c 
Reproduced with pekmission of Digital Equipment Corporation from the PDP-10 
Reference Handbook. 
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Floating Scale 

Doublc Floating Ncgatc 

Unriormalized Flo:~ ting Add 

Arithmetic SHift - 
Logical SHift 
ROTate 

r 

Increment Byte Pointer 

PUSH 1 ( z d  Jump POP UQ 

with Complement of Ac 

Complements of Both 

Inclusive OR I exclusive OR 
EQui Valence 

never 
SKIP if memory 

:yz:: Subtract One from ' y ] [ $ : a L r E q u a l  AC and Jump Always 

Immediate Greater 
compare AC ( with Mernory 

and skip if A(' Greater or Equal 
Not equal 

Add One to Both halves of  AC and Jump i f  

with Direct mask No modification 

Jump' 

'to SubRoutine 
and Save PC 
and Save Ac 
and Restore Ac 
if Fitid First One 
on Flag and CLear  it 
on Overflow (JFCL 10,) 
on CaRrY 0 (JFCL 4,) 
on CaRrY 1 (JFCL 2,) 
on CaRrY (JFCL 6,) 
on Floating Overflow (JFCL 1 ,) 
and ReSTorc 
and ReSTore Flags (JKST 2 , )  

,and ENable 1'1 channel (JRST 12.) 

HALT (JRST 4,) 

, eXeCuTe 

In 
Out 

CONdit ions all masked bits Zero 
in and Skip if ( some masked bit One 

never 



1.4 compilat ion Control 

The a c t i o n s  of t he  compiler with r e spec t  t o  a  program may be 

cont ro l led  by s p e c i f i c a t i o n s  a )  i n  t he  i n i t i a l  input  s t r i n g  from a TTY, 

b) i n  the  module head, c)  by a  s p e c i a l  SWXTCHES dec la ra t ion .  Not a l l  

a c t i o n s  can be con t ro l l ed  from each of t hese  p laces ,  bu t  many can. 

Some a c t i o n s  once spec i f i ed  have a  permanent e f f e c t  (such as whether t o  

c r e a t e  a  high segment o r  low segment program) whi le  t he  e f f e c t  of o t h e r s  

can be modified (such as l i s t i n g  con t ro l ) .  The t a b l e  i n  s e c t i o n  1.4.4 

g ives  a l i s t  of var ious  compiler ac t ions  and t h e  assoc ia ted  switch and/or 

source language cons t ruc ts  which modify those ac t ions .  This l i s t  i s  

sub jec t  t o  change. 



1.4.1 Command Syntax 

The general format of the initial command to Bliss is: 

objdev: file.ext,lstdev:file.ext t sorcdev:file.ext,..~,sorcdev:file.ext 

The "ob jdev: file.extU and/or "lstdev: file.extU may be omitted with the 

implication that the corresponding file is not to be generated, The 

".extl' may be omitted on any of the file specifications and the following 

defaults assumed: 

object file: REL 

listing file: LST 

source file: BLZ 

As with DEC CUSP'S, switches of the form /x (x=A,B, . . . ,Z) may be placed 
anywhere in a camrmand string, 



1.4.2 Module Head 

A s  explained i n  1.1.1 the  syntax f o r  a module i s  

module -, MODULE name(parameters) = e ELUDCM 

The 'parameters '  f i e l d  may contain various information which w i l l  a f f e c t  

t he  compiler 's  ac t ion  with respect  t o  the current  program. The syntax 

of t h i s  f i e l d  i s  

parameters -r parameter 1 parameter ,parameters 

. The allowed forms of 'parameter '  a r e  given i n  tabular  form i n  sec t ion  

11.1.4.4 under the column headed "module head syntax". 



1.4.3 SWITCHES Declaration 

declaration -, SWITCHES switch list 

switch list 4 switch I switch, switch list 

The SWITCHES declaration allows the user to set various switches 

which control the compiler's actions. The effect of a SWITCHES declara- 

tion is limited to the scope of the block in which the declaration is 

made. The various allowed forms of 'switch' are given in tabular form 

in section 11.1.4.4 under the column headed "SWITCHES DECLARATION". 



1.4.4 Actions 

MODULE HEAD 
SYNTAX 

LIST 

NOLIST 

NOERS 

MLIST 

HISEG 

INSPECT 

NOINSPECT 

- 

SYNTAX 

' SWITCHES ' 
DECLARATION 

LIST 

NOLIST 

NOERS 

MLIST 

-. 

INSPECT 

NOINSPECT 

9 

ACTION 

Enable I i - s t i ng  of t h e  source t e x t .  
This switch i s  assumed t r u e  i n i t i -  - 
a l l y .  

Disable  l i s t i n g  s f  t he  source t e x t .  

Do no t  p r i n t  e r r o r  messages on 
t h e  TTY. 

Enable l i s t i n g  of t he  machine 
code generated. 

Make t h i s  module a highsegment 
module. I n i t i a l l y  modules a r e  
assumed t o  be two segments. 

When t r u e  t h i s  switch w i l l  cause 
a  s p e c i a l  word t o  be emit ted , 

immediately p r i o r  t o  each func t ion  
o r  r o u t i n e  body. This word conta ins  
information t o  f a c i l i t a t e  a  SIMULA- 
l i k e  in spec t ion  mechanism (see  
IV.1.4). The d e f a u l t  i n i t i a l  value 
of t h i s  switch i s  f a l s e .  

This s e t s  t h e  in spec t ion  switch 
f a l s e .  

Enable l i s t i n g  of c o m p i 1 e r . s t a t i s t i c s .  
Information r e l evan t  t o  t h e  imple- 
mentat ion w i l l  be p r in t ed  a t  the  end 
of compilation. 

Syntax check only! No code w i l l  
be  generated - t h i s  speeds t h e  
compilat ion process  and i s  the re -  
f o r e  u se fu l  dur ing  t h e  i n i t i a l  
s t ages  of program development. 

'e '  s p e c i f i e s  t h e  number of 
'dec la red1- type  r e g i s t e r s  t o  be 
used. Unless s p e c i f i e d  t h i s  value 
is  de fau l t ed  ' to  a  small number . 
( t h r e e  a t  t h e  time of t h i s  wr i t i ng ) .  



MODULE HEAD ' SW 'ITCHES ' Ei%p ( SYNTAX ACT1 ON 

OPTIMIZE 

NOOPTIMIZE 

EXPAND 

NOEXPAND 

SREG = e 
VREG = e 
BREG = e 
FREG = -e 

NORSAVE 
RSAVE 

LOSEG 

NOOPTIMIZE 

EXPAND 

NOEXPAND 

NORSAVE 
RSAVE 

LOSEG 

Registers with absolute names 
el, ..., e are reserved (usually 
for inteQ-module comnunication). 

Because of the possibility of 
computed addresses in Bliss 
programs, it is not possible 
for the compiler to determine 
whether optimization of sub- 
expressions is possible.across 
1 t . 1 1  , 

I s in a compound expression. 
Therefore the compiler operates 
in two modes - one in which it 
does optimize such common sub- 
expressions and one in which 
it does not. When the 'optimize' 
switch is true the compiler - 
attempts to optimize across a 
'I;". ?he default mode is for 
the switch to be true. 

Sets the optimization switch 
(see above) to false. 

Give trace of macro expansions. 

Turn off trace of macro expansion. 
This is default initial state. 

? The user may use these to choose 
specific registers to be used as 
the S, V, B, and F, respectively. 

Print a cross-reference to all 
identifiers at the end of compilation 
(assumes a listing is being printed). 

The compiler normally generates code 
to save all declarable registers 
around an EXCHJ operation. This 
default may be overriden by a /R, 
or NORSAVE. RSAVE reverts to the 
default. 

Force entire compilation into the 
low segment. 



MODULE HEAD 
SYNTAX 

STACK 
( see  t e x t  a t  
r i g h t )  

ENTRIES - (nl. . , nm) 

' SWITCHES ' 
DECLARATION 

- 

ACTION 

The syntax of t he  module 
head permits  automatic a l -  
l oca t ion  and i n i t i a l i z a t i o n  
of t he  run-time stack.  The 
syntax i s  

where 

<explicit-stacb::=<stype 
<s -name-sz> 

<s t y p e  : :=GLOBAL I OWN( EXTERNAL 
<s-name-sz>: := (<IDXss-OPTW) 
<ss -0PTD : :=/<li t e r a ~  

The de£au l t s  are 

'STACK'= STACK=OWN(STACK~#~OOO) 
' s~ACK(1i.t) '= STACK-OWN(STACK,lit) 
etc. 

A l l  r o u t i n e  names a r e  forced t o  
be ' g loba l ' .  

An ' e n t r y '  block i s  c rea t ed  a t  
t he  beginning of t h e  ',REL1 f i l e  
f o r  t h e  names nl,n2,. . .n . These 
names must subsequently $e declared 
' g loba l '  i n  the  module. This per -  

m i t s  FUDGE2 t o  be  used t o  c r e a t e  
a l i b r a r y ,  



1.1 Registers 

The sixteen registers are divided into three main classes: 

1. Reserved registers: 

These registers are declared in the module head. Their scope 

is the entire module and they may also be accessed from within any 

global routine, They are never saved. 

2, Bliss run-time registers: 

After the reserved registers have been allocated, the lowest 

four remaining addresses are assigned as the run-time registers. 

In particular, if there are no reserved registers, 0 through 3 are 

assigned as the S, B, F, and V registers respectively. The names 

SREG, BREG, FREG, and VREG are available at the outermost blocks 

of the module and, as in the case of reserved registers, these names 

are accessible from within any global routine. 

3. Temporary registers: 

All the remaining registers fall into this class and are divided 

into two subclasses: 

a. savable: 

These registers are used for declared registers, 

control registers in incr-decr loops, and when necessary 

for computing temporary values. Any of these registers 

which are used in the body of a function or routine are 

saved in the prolog and restored in the epilog. Of course 

if F is not a global routine and F is within the scope of 



IV. RUN TIME REPRESENTATION OF PROGRAMS 

1.0 Introduction 

In order to make the fullest possible use of Bliss, it is important 

to understand the run-time environment in which Bliss programs run. The 

address space is occupied by various types of information: 

(1) program 

(2) constants 

(3) static size variable areas (globals and owns) 

(4) stacks 

Programs are 'pure' (they do not modify themselves) therefore program 

and cohstant areas are placed in contiguous, write-protected regions 

and may be shared (see the 'HIGSEG' switch declaration, section 11.1.4). 

static variable storage and stack space are placed in readable/writable 

memory. The key to understanding the run-time environment in the stack 

configuration and register allocation is illustrated in Figure IV.l. 

Each process (co-routine) has its own stack configured as shown in IV.1. 



of register R, then R is not preserved. The user must 

declare the s.ize of this block of registers in the module 

head. (DREGS = ) .  These registers are allocated from the 

highest addresses. 

b. non-savable: 

These axe the registers used for calculating inter- 

mediate results. They are saved at the call site of a 

function or routine only if they contain a needed result 

and are never saved in the prolog or epilog. 

Comments : 

a. If one wishes to load a collection of Bliss modules together, 

they must request precisely the same reserved registers and request the 

same number of savable temporaries. 

b. The two classes of temporary registers are managed quite differ- 

ently in that the savable registers obey a stack discipline ( t o  minimize 

saving and restoring) and the non-savable are used in round-robin fashion 

(to lengthen the life of intermediate results). The present version 

of the compiler requires a minimum of 4 non-savable registers--i.e., the 

maximum value of DREGS = 8 - # of reserved regs. In general the compiler 

can produce better code if DREGS is kept to the minimum value which the 

lexical scope of declared registers and/or incr-decr loops allow. 



1.2 The Stack and Functions 

m e  f i r s t  17, loca t ions  of each s t ack  are reserved f o r  s t a t e  informa- 

c ion  ( r e g i s t e r s  p l u s  program counter) f o r  a process when i t  is  inac t ive .  The 

use of these c e l l s  i s  explained more f u l l y  i n  1.4. The conf igura t ion  

above these  1 7  s t a t e  words depends upon the  depth of nes t ing  of funct ion  

c a l l s ,  bu t  each such nested c a l l  involves a s imi l a r  (not ident ica l ) '  use 

of the s tack;  Figure IV.1 i l l u s t r a t e s  a typ ica l  s t ack  conf igura t ion  

a f t e r  s eve ra l  nested funct ional  c a l l s .  A t  a t i m e  when one of these 

funct ions  i s  executing 

(1) m e  S-regis te r  po in t s  t o  the  h ighes t  assigned c e l l  i n  the 

s t ack ;  the  S - reg i s t e r  i s  used t o  c o n t r o l  the  a l l o c a t i o n  

of the  s t ack  area .  
>P 

(2) The F - reg i s t e r  po in t s  t o  the  ' l o c a l  base of s t a c k t ;  below 

the F - reg i s t e r  a r e  the  parameters t o  the funct ion  and t h e  

r e t u r n  address.  .The s t ack  c e l l  a c t u a l l y  pointed t o  by 

the F-regis te r  conta ins  the  previous value of the  F - reg i s t e r  . 

a t  the time a t  which the cu r ren t  funct ion  was entered.  

(3) .The c a l l i n g  sequence which is  used t o  en te r  a  funct ion (or 

rou t ine )  i s  

PUSH S,p, ; push 1 s t  parameter onto the  
s t ack  

PUSH Ssp2 ; push 2nd parameter onto the  
s t ack  

PUSH Sspn ; push n t h  parameter onto the  
s t ack  

PUSHJ S,FCN ; jump t o  the c a l l e d  funct ion  

SUB S,[nooooon) ; d e l e t e  the parameters 

(4) Above the F-regis te r  a r e  s tored  the "displays", D . . .D 
1 f a  

*'below1 i n  .the sense of decreasing address values. 



One display is used for each lexical nesting of the decla- 

ration of the function which is currently executing. The 

value of the displays are the F-register values for the 

most recent recursive entries for the lexically embracing 

functions. The displays are needed and used to access 

variables global. to the current functions but local ta 

embracing functions. Such access is prohibited in routines, 

and consequently no displays are saved on a routine entry. 

(5) Above the displays are saved any savable registers which 

are destroyed by the execution of the function body, 

These registers are restored before the function exits. 

(6) Any local variables in the function are stored on top of 

the saved regis ters. Space is acquiredldeleted for locals 

on block entry/exit by s imply adding/ subtracting a constant 

to the S-register. Some of these locals are automatically 

generated by the compiler. 

(7) An excessive number of declared registers, or the evaluation 

of an unbelievably complex expression may exhaust the avail- 

able registers, forcing the area above the locals to be used 

for storing partial results of an expression evaluation. 

(8) The V-register is used to return the value of the function 

or routine. 

Figure IV.2 illustrates the code generated surrounding the body of a func- 

tion. The code surrounding a routine body is identical with the exception 

that the displays are never saved, In this illustration the S, B, F, and 

V registers are shown occupying physical registers 0-3. In practice other 

registers may be chosen if these registers are reserved in the module head. 



Figure IV.1 

Stack S t r u c t u r e  and Reg i s t e r s  f o r  a Process 

Local Variables  

Regis te r  Save Area : I 
N I h - l $ 1 * 1 . 4 * 1 - 4 + - * 1  e.sl-l 

I 

Display I : 

mu-*---- d p r e v  F r e g  
+---.-w..-- ] I r e t u r n  addr 1 

Parameters 

I 

The s t a c k  con- \ 1-1 
f i g u r a t i o n  shown r e t u r n a d d r  rK2 
above i s  r e p e a t e 6  -1 
f o r  each nes ted  -1 

I t 
c a l l .  i I 

IE - 

Regis te r  save 17 

a r e a  when process  

i s  i n a c t i v e  I I 

s t a t e  i n f o  f o r  +-'---"- 
i n a c t i v e  pro- 2 1 PC / 
cess " J.2~ Y 

WASTE 

Reg i s t e r s  

Declared and 

working r e g i s  t e  

S TAC I< 



Figure IV.2 

Function Prolog and Epi log  

FCN: PUSH S,F ; save old F - r eg i s t e r  

PUSH s , I  (F) ; copy d i sp l ay  zero  
'l . . . 

PUSH S, f (F) ; copy d i sp l ay  f 

HRRZ F,S ; s e t u p n e w F  

POP S,R ; r e s t o r e  r e g i s t e r  
z 

SUB1 F,E ; s u b t r a c t  no. d i sp l ays  

PUSH S,F ; new d i sp l ay  c rea t ed  

PUSH S,R, ; save r e g i s t e r  

POP S,R, ; r e s t o r e  r e g i s t e r  

SUB S ,  [ (£+1)001000 (f+l)  ] ; e l imina te  d i sp l ays  ) 

0 . .  a * .  

PUSH S,RZ ; save r e g i s t e r  

BODY OF FUNCTION OR ROUTINE 

J 
POP S,F 

POPJ S, 

Generated 

, For 

Routines 

Figure IV.3 

Block Entry and E x i t  

BENTER: MOVEM ; save in-use working r e g i s t e r s  

MOVEM ; save in-use working r e g i s t e r s  

ADD S ,[nOQOOOn] ; INCR S - r eg i s t e r  by no. l o c a l s  i n  b l k  

BEXIT : SUB S, [(n+j)ooooo(n+j)] ; DECR S- reg i s t e r  by no. l o c a l s  i n  b l k  

; (note: in-use reg?.s left i n  s t ack ,  

; re-loaded only when used) 



1.3 Access t o  Variables  

This s e c t i o n  b r i e f l y  i nd ica t e s  the mechanisms by which generated code 

accesses  var ious  types of v a r i a b l e s  (formals, owns and g loba l s ,  l o c a l s ,  

e t c . )  The exac t  addressing scheme used by the canp i l e r  i n  any p a r t i c u l a r  

case  i s  h ighly  dependent upon the  context ;  however, t he  foll.owing m a t e r i a l  

should a i d  i n  understanding the  o v e r a l l  s t r a t egy .  

(a) OWN and GLOBAL v a r i a b l e s  are accessed directly. 

(b) Formal parameters of t h e  c u r r e n t  rou t ine  are accessed negat ive ly  

wi th  r e spec t  t o  the  F - r eg i s t e r .  I f  the  cu r r en t  rou t ine  has  n 

formals,  then the i t h  one i s  addressed by 

(-n + i - 2) (F) 

( c )  Local v a r i a b l e s  of the cu r r en t  rou t ine  are accessed p o s i t i v e l y  

with r e spec t  t o  the F - r eg i s t e r .  To access  the  i t h  l o c a l  c e l l ,  

one uses  

( i  + d  + r  + l ) (F )  

where d i s  the number of d i sp l ays  saved and r i s  t h e  number of 

r e g i s t e r s  saved on func t ion  en t ry .  

(d) Formal parameters and l o c a l  v a r i a b l e s  which a r e  not  declared i n  

t h e  c u r r e n t l y  execut ing func t ion  a r e  accessed through the  d l s -  

play.  The appropr ia te  d i sp l ay  i s  copied i n t o  one of t he  working 

r e g i s t e r s  then accessed by indexing through t h a t  r e g i s t e r  i n  a 

manner s i m i l a r  t o  that shown i n  (b) or  ( c )  above. 

The f i r s t  four  cha rac t e r s  of t h e  name introduced i n  t h e  module head 

i s  used t o  name var ious  regions i n  the produced code. These names a r e  

dec lared  l lexternal"  and the re fo re  a v q i l a b l e  i n  DDT. I f  'XXXX' are the 



IV, 1,3a 

f i r s t  four  charac ters  of t he  module name, then 

MUU[ i s  the  loca t ion  of t he  f i r s t  i n s t r u c t i o n  i n  t h e  main 
body of t h e  module. 

XXXX. F i s  t h e  loca t ion  of t he  " l i t e r a l "  a rea  which conta ins  
cons tants  generated by t h e  compiler. 

XXXX. 0 i s  the  loca t ion  of t he  "own" a rea  i n  which i s  s tored  
a l l  va r i ab le s  declared 'own' i n  the  module. 

XXXX . G i s  the  loca t ion  of t he  "globalv a rea  i n  which is  s tored  
a l l  va r i ab le s  declared "global" i n  the module. 

XXXX, . i s  the  module name recognized by DOT. 

XXXX. P i s  t h e  first l o c a t i o n  of t h e  " p l i t "  area. 



V. COMPILER IMPLEMENTATION 

This table contains a description of the implementation of the Bliss 

compiler. At every instant of time this section will necessarily be in- 

complete and possibly erroneous. It will be extended and corrected as 

time permits and the compiler changes. 

The initial contents of the section is a set of diagrams of the major 

tables in the compiler. 



THE LITERAL TABLE 

1 
value 

L- 

1 

r 
I 

I 

i 

LEXEME 

LINKF 
, 

l i tera l  
table 
hashed 
and 
treated 
as 
circular 

-.L 

LS 

I 
I 

1 
t 

\2" b 

/ 

VE 

NO 
V E r O ?  YES" 

N value 

0 i f  value in next f ie ld 
index into LT in next f i e l d  

("big" l i terals  only) 
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1 i f  l i tera l  

I 
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I I 



,- - - - - . - -4OP6FTABLE = index o f  l a s t  c e l l  a s s  igned 

unassigned and not on FSL 

FSL = s e t  of  a r e a s  l i nked  
t oge the r  such t h a t  
0 t h  c e l l  con t a in s  s i z e  

I r o u t i n e  RELEASESPACE l inks  a r e a s  i n t o  FSL: of areab 1st c e i l  
h a s  l i n k  t o  next  area, 
(End of cha in  has  
0 l i nk , )  

I r o u t i n e .  GETSPACE a s s i g n s  a r e a s  from FSL: 
i -lip---''---- 1 

G. Run down FSL; f o r  each 
free c e l l ,  mark c o r r e s -  
ponding b i t  i n  AVL 
(. 

) - d m .  
2.  Check f o r  ad j acen t  marked 

s ( n p f y " ~  'yes '  b i t s  h o t  l tnked  i n  as one 
GARBAGE COLLECT ION a r e a ,  

beyond I 

Yes CALLEXECFORSPACE 

space 
a s s  igned 

3, Rebuild FSL, c o l l a p s i n g  
ad j acen t  a r e a s ,  - l I 

FSL a f t e r  GETSPACE: 

..... ...- . .... 

Por t i on  of  FSL a f t e r  
r ebu i ld ing ,  

a s s ;  n e d  1, 
FREE SPACE LIST 



The e n t i r e  program is a l iqked l i s t ,  and is i t s e l f  l inked ' to  global variable PROGRAM: 

Header I 

- PROGRAM - 

class  f ie ld  
)class (=type of code for  header) if-then-else 

I 

HDR 12 )subclass (=number of c e l l s  t o t a l )  

h 2 

CODE 

. 

(example) 
" i f  .a then  

.b e l se  .c 

, HDR 

0 --- 
HDR -- 
0 . 

HDR 
----.I- 

0 
I 

HDR - 
0 

After processing, the above is  equivalent to: 

' ,, 

s - t h e n - e l s e  

1 

i f  -then-else .."....--- 
2 

-.I(I<---U--- 

i f  -then-else --..-. 
3 - 

1 _ - . -  

-- -.---.- 
4 

HDR 
0 

.- 

I -T -E Header 

- 
ITE ITE ITE ITE Subheaders 

5 

Subheader 
c lass  

,,-)initially the same 
as header c lass  f i e l d  

)index (ie. ,  which item among 
the subheaders) 

if-then-else 
5 - 

changed to: I F  THEN ELSE Label 

CODE 

After more processing, the above may change to: 
# i 

I 

- - -  

Label Label 

. . .and so on. 

THE CODE TABLE 
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