
1.1 DECUS
\ / PROGRAM LIBRARY

DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LAN-GUAGE

BLISS REFERENCE MANUAL (A Basic Language for
Implementation of System Software for the PDP-1 0)

W. A. Wulf, Do Russell, A. No Habermann, .C. Geschke,
J. Apperson, D. Wile, R. Brender*

Computer Science Department
Carnegie-Me l Ion University
Pittsburgh, Pennsylvania

January 15, 1970 (Revised August 15, 1970)
(Revised November 9, 1970) (Revised Apri l 7, 1971)

BLISS

* Digital Equipment Corporation, Maynard, Mass. 01 754

Although this program has been tested by the contributor, no warranty, express or implied, i s made by the contributor,

Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the

program or related program material, and no responsibility i s assumed by these parties i n connection therewith.

BLISS REFERENCE MA.NUAJ,

A Basic Language f o r Implementation of
System Software f o r t h e PDP-10

W. A.. Wulf
D. Russe l l
A. N. Habermann
C. Geschke
J. Apperson
D. Wile
R. Brender9k

Computer Science Department
Carnegie-Mellon Univers i ty

P i t t sbu rgh , Pennsylvania

January 15, 1970

(Revised August 15, 1970)
(Revised November 9, 1970)
(~ e v i s e d A p r i l 7, 1971)

*
D i g i t a l Equipment Corporation, Maynard, Mass. 01754

This work was supported by t h e Advanced Research Proijects Agency
of t h e Of f i ce of t h e Sec re t a ry of Defense (F44620-70-C-0207) and
i s monitored by t h e A i r Force Off ice of S c i e n t i f i c Research. This
document has been approved f o r pub l i c r e l e a s e and s a l e ; i t s d i s t r i -
bu t ion i s unl imited.

This mama1 i s a d e f i n i t i v e d e s c r i p t i o n of the BLISS language a s

implemented f o r the PDP-10. BLISS i s a language s p e c i f i c a l l y designed f o r

w r i t i n g software systems such a s compilers and opera t ing systems fo r t h e

PDP-10, While much of the language i s r e l a t i v e l y "machine independent" and

could be implemented on another machine, t h e PDP-10 was always p re sen t i n

our minds during the design, and a s a r e s u l t BLISS can be implemented very

e f f i c i e n t l y on the 10. This i s probably not t r u e f o r o ther machines.

We r e f e r t o BLISS a s an "implementation language", This phrase has

became q u i t e popular l a t e l y , b u t apparent ly does nb t have a uniform meaning.

Hence i t i s worthwhile t o expla in what we mean by the phrase and consequently

what our ob jec t ives were i n the language's design. To us t h e phrase "imple-

mentation language" connotes a h igher l e v e l language s u i t a b l e f o r w r i t i n g

product ion software; a t r u l y successfu l implementation language would

completely remove the need and/or d e s i r e t o w r i t e i n assembly language,

Furthermore, t o us, an implementation language need no t be machine inde-

pendent-gin f a c t , f o r reasons of e f f i c i e n c y , i t i s un l ike ly t o be.

Many reasons have been advanced f o r the use of a h igher l e v e l language

f o r implementing software. One of t h e most o f t en mentioned i s t h a t of speed-

i ng up i t s production. This w i l l undoubtedly occur, but i t i s one of t h e l e s s

important b e n e f i t s , except i n so fa r a s i t permits fewer, and b e t t e r program-

mers t o be uqed, Far more important, we be l ieve , a r e t h e b e n e f i t s of docu-

mentat ion, c l a r i t y , co r r ec tnes s and mod i f i ab i l i t y . These were t h e most

important goa l s i n the design of BLISS,

Some people, when d iscuss ing the sub jec t of implementation languages,

have suggested t h a t one of t he e x i s t i n g languages, such a s PL/I, or a t most

a d e r i v a t i v e of one, should be used; they argue t h a t t h e r e i s a l ready a pro-

l i f e r a t i o n of languages, s o why add another . The only r a t i o n a l excuse f o r

t h e c r e a t i o n of y e t another new language i s t h a t e x i s t i n g languages a r e

unsu i t ab l e f o r the s p e c i f i c a p p l i c a t i o n s i n mind. I n t h e sense t h a t a l l

languages a r e s u f f i c i e n t t o model a Turing machine, any of t h e e x i s t i n g

languages, LISP f o r example, would be adequate a s an implementation language.

However, t h i s does no t imply t h a t each of t he se languages would be equa l ly

convenient. For example, FORTRAN can be used t o wr i t e l i s t process ing pro-

grams, bu t t h e l ack of r ecu r s ion coupled wi th t h e requirement t h a t t h e pro-

grammer code his own p r i m i t i v e l i s t manipulat ions and s to rage c o n t r o l makes

FORTRAN v a s t l y i n f e r i o r t o , say , LISP f o r t h i s type of programming.

What, then, a r e t h e cha rac t e r i s t i c s of s y s terns programming which should

be r e f l e c t e d i n a language e s p e c i a l l y s u i t e d f o r t h e purpose? Ignor ing

machine dependent f e a t u r e s (such a s a s p e c i f i c i n t e r r u p t s t r u c t u r e) and

recogniz ing t h a t a l l d i f f e r e n c e s i n such programming c h a r a c t e r i s t i c s a r e

only ones of degree, t h r ee f e a t u r e s of systems programming s t and out:

1. Data s t r u c t u r e s , I n no o the r type of programming does t h e

v a r i e t y of d a t a s t r u c t u r e s nor t h e d i v e r s i t y of opt imal

r e p r e s e n t a t i o n s occur.

2. Cont ro l s t r u c t u r e s , P a r a l l e l i s m and time a r e i n t r i n s i c :

p a r t s of t he programming system problem.*

3 . Frequent ly , systems programs cannot presume t h e ex i s t ence

of l a r g e support r o u t i n e s (fo r dynamic s to rage a l l o c a t i o n ,

f o r example) .
*
Of course , p a r a l l e l i s m and time a r e i n t r i n s i c t o real time programming

as wel l .

These are the p r i n c i p a l c h a r a c t e r i s t i c s which the design of BLISS

a t tempts t o address . For example, t ak ing p o i n t (3) , the language was

designed i n such a way t h a t no system support i s presumed or needed,

even though, f o r example, dynamic s torage a l l o c a t i o n .is provided. Thus,

code generated by t h e campiler can be executed d i r e c t l y on a "bare"

machine. Another example, taking p o i n t (I) , i s the d a t a s t r u c t u r e d e f i n i -

t i o n f a c i l i t y . BLISS con ta ins no i m p l i c i t d a t a s t r u c t u r e s (and hence no

presumed r ep resen ta t ions f o r s t r u c t u r e s) , bu t r a t h e r provides a method

f o r de f in ing a r ep re sen ta t ion by g iv ing the e x p l i c i t access ing algori thm.

One f i n a l po in t before proceeding wi th the d e s c r i p t i o n of t he lan-

guage--namely, the method of syntax s p e c i f i c a t i o n , The syntax i s given

i n BNF, f o r example

escapeexpression + EXITBLOCK escapeexpressionl EXITLOOP escapeexpression

escapeexpression + (e

where: (1) lower case words a r e me ta l ingu i s t i c v a r i a b l e s , and (2) t he

'emptyt cons t ruc t i s represented by a blank (as i n the f i r s t a l t e r n a t i v e

of t he second r u l e above).

iii

TABLE OF CONTENTS

1 . LANGUAGE DEFINITION

.. 1.1.1 Modules 1.1

1 2 Blocks and Comments 1.2
... 1.1.3 Literals 1.3

... 1.1.4 Names.. 1.4

............ 1.1.5 Pointers 1.5

............................ 1.1.6 The "contents of" Operators 1.6

1.2.1 Expressions .. 2.1

1.2.2 Simple Expressions 2.2
1.2.3.1 Control Expressions 2.3.1
1.2.3.2 Conditional Expressions 2.3.2

1.2.3.3 Loop Expressions 2.3.3
1.2.3.4 Escape Expressions 2.3.4

................................... 1.2.3.5 Choice Expressions 2.3.5

1.2.3.6 Co-routine Expressions 2.3.6
... 1.3.1 Declarations 3.1

...................................... 1.3.2 Memory Allocation 3.2

1.3.3 Map Declaration .. 3.3
....................................... 1.3.4 Bind Declaration 3.4

.................................. 1.3.5 Structure Declaration 3.5

.................................. 1 .3 .6 Function Declarations 3.6

1.3.7 Simple Macros 3.7
I1 . SPECIAL LANGUAGE FEATURES

11.1.1 Special Functions 11.1.1
..................... 11.1.2 Character Manipulation Functions 11.1.2

11.1.3 Machine Language 11.1.3
11.1.4 Compilhtion Control 11-1.4

111 . SYSTEM FEATURES

(not yet available)

IV. RUN TIME REPRESENTATION OF PROGRAMS

IV.1.0 Introducti~n.................~....................~ IV-1.0

IV.1.1 Registers,..,..........m..e..e..........o..mme.. IV-1.1

IV.1.2 The Stack and Functions...... e . . . ~ ~ e ~ ~ ~ ~ n * ~ ~ ~ e o L ~ . ~ ~ IV-1.2

IV.1.3 Access to Variables.,...e........,.......e.... IV-1.3

V. IMPLEMENTATION OF THE BLISS COMPILER

APPENDIX :

A. Syntax...e....... A . 1

B. Input-Output Codes .,..,...............~....~............ B.l

C. Word Fomats ~ e e . ~ e . . e C.1

D. Bliss Error Messagesb~....... D . 1

I. LANGUAGE DEFINITION

1.. 1 Modules

A module i s a program element which may be compiled independent ly of

o t h e r elements and subsequently loaded w i t h them t o form a c~omplete program.

module -., MODULE name (parameters) = e ELIlDOM

A module may request access t o other modules ' v a r i a b l e s and func t ions by

decla.ring thei . r names i n EXTERNAL dec l a ra t~ lons . A modu'le p e r ~ n i t.s gene ra l

use of i t s own v a r i a b l e s and ROUTINES by means o f GLOBAL decl.ara.tions.

These l i n e s of communicati.on between modules a r e - l i n k e d by the l oade r p r i o r

t o execution. A complete program c o n s i s t s of a se t of compi:Led modules

l inked by t h e loader .

The 'name' i n a module d e c l a r a t i o n i s used t o identify t h a t module

and must be unique i,n i t s f i r s t four characters from any o t h e r g loba l

names which are t o be l inked toge ther t o form a conlplete program. The

'parameters' f i e l d of a module d e f i n i t i o n i s used t o c o n t r o l t he compila-

t i o n (s m s e c t i o n 1 1 . 1 . 4) . See s e c t i o n I V - 1 . 3 for o the r uses of t h e module

name.

1,2 Blocks and Comments

A block i s an a r b i t r a r y number of dec la ra t ions followed by an a r b i -

t r a r y number of expressions a l l separated by semicolons and enclosed i n a

matching begin-end o r ' (' - ') ' pa i r .

block + BEGIN blockbody END ((blockbody)

compoundexpression + B E G I N express ionsequence END I (express ionsequence)

blockbody -, dec la ra t ions ; expressionsequence

dec la ra t ions -+ dec la ra t ion 1 dec la ra t ion ; dec la ra t ions

expressionsequence -+ I e 1 e ; expressionsequence

comment + I ! r e s t o f l i n e endoflinesymbol) st;ingwithnopercent 46

Comments may be enclosed between the symbol ! and the end of the l i n e on

which the ! appears. However, a ! may appear i n the quoted s t r i n g of a

l i t e r a l , or between two)& symbols, without being considered the beginning

of a comment. Likewise, a)& enclosed wi th in quotes w i l l be considered p a r t

of a s t r i n g .

A s i n Algol t h e block ind ica t e s the l e x i c a l scope of t he names declared

a t i t s head, However, i n c o n t r a s t t o Algol, t he re i s an exception. The

names of GLOBAL v a r i a b l e s and ROUTINES have a scope beyond the block and

although they a r e declared wi th in the module, the e f f e c t , f o r a module

c i t i n g them i n an EXTERNAL declara t ion , i s a s i f they were declared i n the

cu r ren t block, This v i o l a t i o n of block s t r u c t u r e has implicat ions with

respec t t o allowed references , p a r t i c u l a r l y i n connection with dec:lared

r e g i s t e r s . These impl ica t ions , and a corresponding s e t of r e s t r i c : t i ons ,

w i l l be discussed i n connection with the a f f ec t ed dec lara t ions .

1.3 Literals

The basic data element is a PDP-10 36 bit word. However, the hard-

ware provides the capability of pointing to an arbitrary contiguous field

within a word and so a 36 bit word may be regarded as a special case of

the "partial word". Literals are normally converted to a single word.

literal -. number 1 quotedstring I p l i t

number + decimal 1 octal 1 floating

decimal -r digit I decimal digit
octal + # oit I octal oit
floating + decimal.decima1 1 decimal .decimal exponent 1 decimal. exponent
exponent + E decimal I E + decimal 1 E - decimal
digit + 01112 --- 19
oit - 0(112 --- 17

3 6
numbers (unsigned integers) are converted to binary modulo 2 residue

35 -2 . The binary number is 2's complement and is signed. Octal constants

are prefixed by the sharp sign, #. Floating numbers must have an embedded

decimal point and no embedded blanks!

quotedstring + leftad justedstring I rightad justedstring
leftadjustedstring -, 'string'

rightad justedstring 4 "string"

Quoted-string literals may be used to specify bit patterns corresponding to

the 7-bit ASCII code for visable graphic characters on the external I/O

media. Two types of single-word strings are provided for left or right

j u s t i f i c a t i o n of the s tr ing within a word. Normally quoted stri-ngs are

l imited to f i v e characters and the unused b i t pos i t ions are f i l l e d with

zeroes.

Within a quoted s tr ing the quoting character i s represented by two

successive occurrences of that character.

1.3.1 Pointers to Literals - "plitUs
A plit is a ~ointer to a literal word whose contents are specified at

compile time; e.g., plit 3 is a pointer to a word whose contents will be

set to 3 at load time.

plit 4 plit plitarg
Jc

plitarg 4 load-the-expression I
long-string I
triple

triple 4 (triple-item-list)

triple-item-list triple-item 1 triple-item, triple-item-list
triple-item load-time-expression 1

long-string (
duplication-factor: plitarg

duplication-factor + compile-time-expression

*
Note: "plit (3)+4" has 2 parses: plit load-time-expression

and plit triple + expression
The latter choice is used. Hence, "plit (3)$4" is the same

as "(plit 3)+4".

A plit may point to a contiguously stored sequence of literals -
long strings and nested lists of literals are also allowed. The value of

plit (3,5,7,9)

is a pointer to 4.contiguous words containing 3,5,7 and 9 respectively.

A long string (> 5 characters) is also a valid argument to a plit:

plit 'THIS ALLOCATES 5 WORDS'

a l l o c a t e s 5 words of 7 - b i t ASCII cha rac t e r s w i th 3 pad c h a r a c t e r s o f ze ro
3

t o t h e r i g h t and t h e last b i t turned on,

The arguments t o p l i t s need only be cons tan t a t load time; p l i t s are

themselves l i t e r a l s , thus nes t i ng of p l i t s i s allowed (with the i n n e r p l i t s

a l l o c a t e d f i r s t) :

ex t e rna l A,B ,C ;

bind y = p l i t (A , p l i t (B ,) , p i t 3 , ' A LONG STRING' , 5+9*3) ;

i s such t h a t :

.Y[O] = A<o,36>; . - y [l] = K0,36>; . (, y [l]+ l) = ~<0, ,36>

**yC2I = 3 ; .y[3] = ' A LON'; . y [4] = 'G STR'; ,y[5] = 1 1 ~ ~ ' - or 1;

In a d d i t i o n , any argument t o a p l i t can be r e p l i c a t e d by spec i fy ing

t h e number of times i t i s t o be repea ted ; e.g.

p l i t (7:3)

produces a p o i n t e r t o 7 contiguous words, each of which contai.ns t h e va lue 3.

Duplicated p l i t s a r e a l l o c a t e d once, i d e n t i c a l p l i t s a r e not pooled - hence,

bind x = p l i t (3: p l i t A, p l i t A, 2 : (2 ,3)) ; -

i s such t h a t :

Note: t h e l eng th of every p l i t (i n words) i s s to red as t h e word preceding

t h e p l i t . Hence, i n t h e l a s t example, .x [- l] = 8.

1.4 Names

Syn tac t i ca l ly an i d e n t i f i e r , o r name, i s composed of a sequence of

l e t t e r s and/or d i g i t s , the f i r s t of which must be a l e t t e r . Ce r t a in names

a r e reserved a s d e l i m i t e r s , s ee Appendix A. Semanti.cally the occurrence

of a name i s exac t ly equivalent t o t h e occurrence of a po in te r t o t h e named

item. 'fie term "pointer" w i l l t ake on s p e c i a l connotat ion l a t e r with

respec t t o contiguous sub-f ie lds (bytes) w i th in a word; however, f o r the

present d iscuss ion the term may be equated wi th "address". This i n t e r p r e -

t a t i o n of name i s uniform throughout the language and t h e r e i s no d i s t i n c -

t i o n between l e f t and r i g h t hand values. Contrast t h i s ' w i t h Algol where a

name usua l ly , but not always, means "contents off ' .

The po in te r i n t e r p r e t a t i o n r equ i re s a "contents of" operator,and ".I1

has been chosen. Thus .A means Ikontents of l oca t ion A"and . .A means

1) contents of t h e loca t ion whose name i s s tored i n l o c a t i o n A!! To i l l u s t r a t e

the concept, consider t h e assignment expression

p l l + e

This means'btore t h e value computed from e i n t o t h e l o c a t i o n whose p o i n t e r

i s t h e value of pll". . (Further d e t a i l s a r e given i n 2.2.) Thus t h e Algol

statement "A := B1' i s w r i t t e n "A + .B". It i s impossible t o express i n

Algol BLISS expressions such as : "A + B", "A + ..E", ".A + .B", e t c .

1.5 Poin ters

A s explained i n 1.4, the value of a name i s a po in te r which names a

loca t ion i n memory. However, po in te r s a r e more genera l than mere ad-

d re s ses s i n c e they may name an a r b i t r a r y contiguous po r t ion of a word, and

may, f u r t h e r , involve index modif icat ion and i n d i r e c t addressing. (For

f u l l d e t a i l s , t h e reader should r e f e r t o t h e PDP-10 System Reference

Manual,) The most general form of poin ter s p e c i f i e s f i v e q u a n t i t i e s ; an

18
example i s Eo < E 1 , ~ , ~ , E 4 > , where E i s computed modulo 2 and forms 0

6
t he base word address (Y f i e l d) ; E1,E2, a r e computed modulo 2 and form

the pos i t i on , s i z e f i e l d s r e spec t ive ly (P , S f i e l d s) ; E i s computed
. 3

4
modulo 2 and forms the index f i e l d (X f i e l d) ; E4 i s computed modulo 2

and forms t h e i n d i r e c t address b i t (I f i e l d) . Each of El, 5, %, E4 may

op t iona l ly be omitted, i n which case a d e f a u l t value i s supplied. El,€&+ 3
have d e f a u l t s of 0 , but $ has t h e d e f a u l t of 36. Thus, f o r example,

t he expression

(x+l)<,y,3>

de f ines a t h r e e b i t f i e l d i n the f i r s t l o c a t i o n beyond x. Th~e p o s i t i o n

of t h i s t h ree b i t f i e l d i s ".y" b i t s from t h e r i g h t end of eh~e word.

l oca t ion "x" loca t ion "x+lU

1 .6 The "contents of" Operators

The i n t e r p r e t a t i o n placed on i d e n t i f i e r s i n B l i s s coupled wi th t h e dot

operator discussed e a r l i e r ' allow a programmer d i r e c t access t o , and con t ro l

over, f i e l d s wi th in words, t o poin ters t o such f i e l d s which a r e themselves

s tored wi th in memory, t o chains of such poin ters ; e t c . Two add i t iona l

"contents of" operat ions besides the dot a r e provided which a,re more e f f i -

c i e n t i n c e r t a i n cases , but which a re defined i n terms of t h e dot and

poin ter operat ions. These operators a r e @ a n d \ , and a r e defined by t h e

following (where t i s a temporary):

Thus, both @E and \E speci fy a f u l l 36 b i t value. @E uses only the r i g h t -

most 18 b i t s of € as the absolute address from which t o f e t c h the value.

\E i n t e r p r e t s the rightmost 23 b i t s of E a s an i n d i r e c t b i t , index r e g i s t e r

f i e l d and base address. Whichever form i s used, the compiler at tempts t o

optimize t h e code produced; thus, f o r example, i d e n t i c a l code is produced

f o r .x, @x, a n d \ x , i f they occur i n an expression.

Suppose t h a t t h e assignment "X tY < 3, 15, R1, 0>;" has been executed,

t h a t i s a poin ter has been s tored i n X (tha t poin ter has P=3, ~ ~ 1 5 , x=R~,

1=0), and f u r t h e r t h a t r e g i s t e r ~1 contains two. Now:

(1) Z t. .X s t o r e s the value of X, i.e., the poin ter , i n t o Z

(2) Z t . .X s t o r e s the value of the f i f t e e n b i t f i e l d (which ends t h r e e
b i t s from t h e r i g h t) on the second word following Y i n t o Z

(3) Z t @ .X s t o r e s the value of Y i n t o Z

(4) Z c\ .X s t o r e s the value of, the second word following Y i n t o Z

(5) .X t 5 s t o r e s 5 i n t o the re levant f i f t e e n b i t f i e l d of the second
word following Y

2.1 Expressions

Every executable form in the BLISS language (that is,ever:y form

except the declarations) computes a value. Thus all commands are expres-

sions and there are no "statements" in the sense of Algol or Fortran.

In the syntax description e is used as an abbreviation for expression.

e + simpleexpression I controlexpression

2.2 Simple Expressions

The semantics of simpleexpressions i s most e a s i l y descr ibed i n terms

of t he r e l a t i v e precedence of a s e t of ope ra to r s , bu t readers should a l s o

r e f e r t o t h e BNF-like d e s c r i p t i o n i n 4.1. The precedence number used

below should be viewed a s . an o rd ina l , so t h a t 1 means f i r s t and 2 second

i n precedence. I n t he following t a b l e t h e l e t t e r € has been used t o denote

an a c t u a l expression of the appropr ia te s y n t a c t i c type, s ee 4.1.

Precedence

1

Exarnp 1 e
I

Semantics

compoundexpression

block I The component expressions a r e
I evaluated from l e f t t o r i g h t

and. t h e f i n a l va lue i s tha.t of
t he l a s t c-o~nponent express ion.

EO(E1'€p*.='En) A func t ion c a l l , see 3.4.

1 name[E1,%, ... ,En] A s t r u c t u r e access , s e e 3.5.

name A po in t e r t o t h e named itern,
s ee 1.4.

l i t e r a l Value of the converted l i t e r a l ,
see 1.3.

2 e p o i n t e r parameters> A p a r t i a l word p o i n t e r , s e e 1.5.

Value (poss ib ly p a r t i a l word)
pointed a t by E.

Equivalent t o .U0.36.0.0>. 1

Equivalent t o . (t&)< 0,36, .t< 18,4>, ~ . tQ2, I>>.

El s h i f t e d 1ogi .cal ly by b i t s ;
l e f t i f E p o s i t i v e ; r i g 2 i f

2 5 negat ive. (S h i f t s a r e modulo 256.)

Product of E' s .

El divided by 5.
El modulo E2.

Negative of E.

Sum of f ' s .

Difference between El and . 52

[Note a l l i n t e g e r a r i t h m e t i c i s c a r r i e d ou t modulo z~~ with a r e s idue

3 5
of -2 . I

precedence Examp 1 e

El FMPR .$
Semantics

F loa t ing product of El and 5.
Floa t ing d i v i d e of El by 5.

FNEG El Floa t ing negate of EL.

Floa t ing sum of El and 5.
Floa t ing d i f f e r e n c e of E and 1 E2'

[Truth i s represen ted by 1, f a l s i t y by 0.1

b i tw i se complement of E NOT €

b i tw i se and of E ' s

b i tw i se i n c l u s i v e o r of E ' s

b i tw i se exc lus ive o r of E ' s E XOR E

b i tw i se equivalence of € ' a

The value of t h i s express ion i s
i d e n t i c a l t o t h a t of € 5 , bu t a s
a s i d e e f f e c t t h i s value i s s to red
i n t o t h e p a r t i a l word pointed t o
by El; wi th a s s o c i a t i v e use of +,
t h e assignments a r e executed from
r i g h t t o l e f t : thus El +- 5 + %
means El + (5 + 5).

There i s no guarantee regarding the
order i n which a simpleexpression i s
evaluated other than that provided by
precedence and nesting: thus
(R 2; @ R * (R 3)) may evaluate
to 6 or 9.

j

The reader should refer to the PDP-10 reference manual for a mmplete

def ini t ion of the arithmetic operators under various special input value

conditions.

2.3.1 Control Expressions

The controlexpressions provide sequencing control w e r the execution

of his program; there are five forms:

controlexpression + conditionalexpression (loopexpression I
choiceexpression (escapeexpression I cor out ineexpression

The general goto statement has deliberately been omitted from1 the

language to improve readability and structuring of programs.

2.3.2 Condit ional Expressions

condi t iona lexpress ion I F e l THEN e2 ELSE eg

e l i s computed and the r e s u l t i n g value i s t e s t ed . I f i t i s odd*, t h en e2

i s evaluated t o provide the va lue of the cond i t i ona l expression, otherwise

e i s evaluated. 3

condi t iona lexpress ion +IF el THEN eq

This form i s equiva len t t o t he IF-THEN-ELSE form with 0 r ep l ac ing ea3.

However, i t does introduce the "dangling e l se" ambiguity. .This i s reso lved

by matching each ELSE t o the most r ecen t unmatched !INEN a s the cond i t i ona l

express ion i s scanned from l e f t t o r i g h t .

*
Only the l e a s t s i g n i f i c a n t b i t of e l i s t e s t e d ; a zero b i t i s i n t e r p r e t e d as
f a l s e and a one b i t a s t rue . Thus any odd in t ege r value is i n t e r p r e t e d a s
t r u e and any. even value a s f a l s e .

2.3.3 Loop Expressions

The va lue of each of t h e s i x loop expressions i s - 1 , except when an

EXITLOOP is used, see 2.3.4.

loopexpression +WHILE el DO e p

The e l i s computed and t h e r e s u l t i n g va lue i s t e s t ed . I f i t is odd, then

e2 i s computed and the complete loopexpression is recomputed; i f i t i s &en,

then t h e loopexpression evalua t ion i s complete.

loopexpression -+UNTIL e3 Do e2

This form i s equivalent t o the WHILE-DO form except t h a t e l i s replaced by

 NOT(^^) .
loopexpression + D O e2 WHILE el

The expressions e2 ,e l a r e computed i n t h a t sequence. The value r e s u l t i n g

from e l i s t e s t e d : i f i t i s odd, then the complete loop expression i s

recanputed; i f i t i s even, then t h e loopexpression evalua t ion i s complete.

loopexpressLon DO e2 UNTIL e3

This form i s equiva lent t o the DO-WHILE form except t h a t e l i s replaced by

NOT (e3).

loopexpression + I N C R name FROM e l TO e2 BY eg DO e4

This i s a s impl i f i ed form of the Algol 68 for-loop. The "name" i s dec lared

t o be a REGISTER or a LOCAL f o r the scope of the loop. The expression e i s
1

computed and s to red inname. The expressions e 2 and eg a r e computed and

s to red i n unnamed l o c a l memory which f o r explanat ion purposes we s h a l l name

U2 and Ug. Any of the phrases "FROM el1' "TO e2" or "BY e3" may be omitted--
3

35 i n which case d e f a u l t va lues of e l = 0, e2 2 -1, eg = 1 a r e supplied.

The following loopexpression i s then executed:

BEGIN BECISTER name; LOCAL U2,U3; U2. + e2; U3 + e j ;

UNTIL .name GTR . U2 DO (e4 ; name * .name + .U3)
END

The f i n a l form of a loopexpression is:

loopexpression + DECR name FROM el TO e BY e3 DO e 2 4

This i s equivalent t o t h e INCR-FROM-TO-BY-DO form except t h a t t h e f i n a l

loop i s replaced by

B E G I N REGISTER name; LOCAL U2, U3 ; U2 + e2 ; U 3 + eg ;

UNTIL .name LSS .U2 DO (e4; name + .name - .U3)
END

If any of t h e FROM, TO, o r BY phrases a r e omitted from a DECK expression,

35
d e f a u l t values of e l 0, e2 = -2 , and ej = 1 a r e supplied. Notice t h a t

i n both forms the end condi t ion i s t e s t e d before the loop, hence t h e loop

i s p o t e n t i a l l y executed zero o r more times.

2.3.4 Escape Expressions

The various forms of escapeexpressions permit control to leave its

current environment. They are intended for those circumstances when other

controlexpressions would have to be contorted to achieve the desired effect.

escapeexpression -+ environment level escapevalue I RETURN escapevalue
environment 4 EXIT I EXITBLOCK I EXITCOMPOUND 1 EXITLOOP I EXITCOND

EXITCASE I EXITSET I EXITSELECT

level -4 [[e j

escapevalue I e

Each of these expressions conveys to its new environment a value, say E,

obtained by evaluating the escapevalue, which may optionally be omitted imply-

ing € = 0. The levels field, which must evaluate to a constant, sa:y n, at

compile time, determines the number of levels of the specified control environ-

ment to be exited; the levels field may optionally be omitted in wh~Lch case

one level is implied, The maximum number of levels which may be exited in

this way is limited by the current function (routine) body or the outermost block.

RETURN terminates the current function, or routine, with value E.

EXITBLOCK terminates the innermost n (where n is the value of the
"levels" field) blocks, yielding a value of E for the
outermost one exited.

EXITCOMPOUND terminates the innermost n compound expressions, yielding
a value of C for the outermost one exited,

EXITLOOP terminates the innermost n loop expressions, yielding a .
value of f for the outermost one exited.

EXITCOND terminates the innermost n conditional expressions,
yielding a value of E for the outermost one exited.

EXIT terminates the innermost n control scopes (whether blocks,
compounds, conditionals, or loops with E as the value

3
of the outermost.

EXITCASE terminates the n innernost case expressions yielding
a value of E for the outermost of these.

EXITSET terminates the n innermost set expressions, yielding a
value of E for the outermost of these.

EXITSELECT terminates the n innermost select expressions, yielding
a value of E for the outermost of these.

2.3.5 Choice Expressions

choiceexpression + CASE elist OF SET expressionset TES

elist 4 e I e, elist
expressionset -r 1 e 1 ; expressionset I e ; expressionset

Let us suppose that the actual e's within the elist are E1,s,e.m,E, and

that the actual expressions within the expressionset are n,;n,;,,,;n. Then

the expressions ll are executed in that order. The value of

the case expression is that of
%'

choiceexpression -, SELECT elist OF NSET nexpressionset TESN

nexpressionset -r I ne 1 ne; nexpressionset

This f0.m is somewhat similar to the case expression except thist the

expressions in the nexpressionset are not thought of as being sequentially

numbered--instead each expression in the nexexpressionset is tagged with an

"activation" expression. Suppose we have the following select expression

sl3LECT El, 5, OF NSET % : E5; €6: E,; E8: Eg; EI0: Ell TESN

then the execution proceeds as follows: first El, 9, E3 are evaluated,

then E4, E6, E8 and EI0 are evaluated; correspondingly E is evaluated if 5

and only if E is equal to one of E 4 5, or E3. Similarly E 7 is evaluated

if and only if €6 is equal to one of El, 5, or $, etc. The order of

comparison of E4, G, etc. is from left-to-right, and the value of the
select expression is the last of 5, E7, etc. to be evaluated (or -1 if
none is evaluated).

In place of one of the s e l e c t i o n expressions, E , , $., e tc . one of

the two reserved words OTHERWISE o r ALWAYS may be used, e.g., "ALWAYS:E~~~.

The expression following an "OTHERWISE:" w i l l be executed j u s t i n t h e case

t h a t none of the preceding s e l e c t i o n c r i t e r i a were s a t i s f i e d . The expres-

s ion following an "ALWAYS : " w i l l always be executed independent of t h e

s e l e c t i o n c r i t e r i a . In the following example

z +- SELECT .x,.y OF

3
OTHERWISE: €

4
36: E

ALWAYS: 2
6

94: E

TESN;

1 2
(1) E w i l l be executed i f .x=1 .y=l, then (2) E w i l l be executed i f

3 1
.x;-7 or . y 7 , then (3) E w i l l be executed i n the case ne i the r E nor 2

4
was executed, i .e . , dl, .+I, .x#7, and .y#7, then (4) E w i l l be executed

5 6
i f .x=36 - o r .y=36, then (5) E w i l l always be executed, and f i n a l l y (6) E

w i l l be executed i f .x=94 o r .y=94. The value assigned t o z w i l l be

t h a t of i) unless .x=94 o r .y=94 i n which case the value assigned t o z

6
w i l l be t h a t of E .

Note t h a t although OTHERWISE and ALWAYS may be placed i n any nset-element,

i t makes no sense t o use more than one OTHERWISE o r t o use an OTHERWISE

a f t e r a n ALWAYS s ince i n these cases the l a t t e r OTHERWISE'S can have no

e f f e c t .

2.3.6 Co-routine Expressions

The body of a funct ion o r rout ine may be ac t iva t ed a s a co-rout ine

and/or asynchronous process ; t h e add i t iona l syntax is

coroutineexpression + CREATE el (e l i s t) AT e2 LENGTH ej THEN e4 (
EXCHJ (e6 , e,)

The e f f e c t of a ' c rea te" expression i s t o c r e a t e a context , tha, t i s

an independent s tack , f o r the rou t ine (funct ion) named by e l , w i th para-

meters spec i f i ed by the e l i s t , a t the loca t ion whose address is spec i f i ed by ep and of

s i z e e words. Control then passes t o t h e s tatements following t h e ' c r e a t e ' . When 3

two or more such contexts have been e s t ab l i shed , con t ro l may be passed from

any one t o any o the r by executing an exchange-jump, EXCHJ (%, e7f where the

value of e6 must be the s t a c k base, e2, I of a previous c r e a t e ' expression.

The value of e;, is made ava i l ab le t o the c a l l e d rou t ine as the value of i t s

own EXCHJ which caused con t ro l t o pass out of t h a t rou t ine . Thus the

value of t h e EXCHJ opera t ion i s defined dynamically by t h e co-rout ine which

JcJc
a t some l a t e r time r e - a c t i v a t e s execution of the cu r ren t co-rout ine,

Should a process, the body of which is necessa r i ly t h a t of a funct ion

(or rou t ine) , execute a ' r e t u r n ' , e i t h e r e x p l i c i t l y o r i m p l i c i t l y , t he ex-

p re s s ion e (fol lowing the ' then ' i n t h e ' c r e a t e 1 expression of t h e c r e a t i n g 4

process) i s ex,ecuted i n the context of the c rea ted process, The normal

r e s p o n s i b i l i t i e s of e4 include making the s t a c k space used f o r the c rea ted

contex,t a v a i l a b l e fo r o ther uses and performing an EXCHJ t o some o the r

process.

The f a c i l i t i e s described above, namely ' c r e a t e ' and 'exchj ' , a r e

adequate e f t h e r f o r use d i r e c t l y a s co-rout ine l inkages or fo r use a s primi-

t i v e s i n cons t ruc t ing more soph i s t i ca t ed co-rout ine f a c i l i t i e s wi th malcros
Jc

Note t h a t t h e 1st EXCHJ t o a newly crea ted process causes con t ro l t o e n t e r
from i t s head wi th a c t u a l parameters a s s e t up by the CRJiATE.
JcJc

The value e7 i s not a v a i l a b l e t o the c a l l e d r o u t i n e on the 1st EXCHJ t o it.

and/or procedures. It should be noted i n the context t h a t i f the created

processes are functions (ra the r than routines) the r e s u l t i n g processes con-

t inue t o have access t o l ex ica l ly global var iables which may be loca l t o an

embracing function (access t o l ex ica l ly local var iables which have been

declared 'own' is avai lable i n e i t h e r case) . In such a case the r e s u l t i n g

s t ruc tu re i s a s tack t r e e i n which a l l segments of the t r e e below the

l e x i c a l level of the (function) process are avai lable t o i t .

Two addi t ional complexities a re added i f the c rea te and exchj

a r e t o be used fo r asynchronous, and possibly p a r a l l e l , execution of pro-

cesses. One is synchronization, by which we man a mechanism by which a

process can coordinate i t s execution with t h a t of one or more others. A

typ ica l example of the need fo r synchronization occurs when two processes,

independently update a common data base, and each must be sure t h a t the

e n t i r e updating process i s complete t e f o r e any other process attempts t o

use the data base. The second complexity a r i s e s i n connection with in te r -

rupts , and i n pa r t i cu la r from the f a c t t h a t c e r t a i n operations must not be

in ter rupted (some exchj operations f o r example). It i s possible t h a t cer-

t a i n s i t u a t i o n s require synchronization mechanisms but do not need t o be

concerned about the in te r rup t problem--as for example, a user program with

asynchronous processes, which i s 'bl ind ' t o in te r rup t s , and which some

monitor systems view as a s ing le ' job ' .

The nature of "appropriate" synchronization primit ives and mechanisms

f o r temporarily bl inding the processor t o i n t e r r u p t s (or i n t e r r u p t s i n a

c e r t a i n c lass) a re highly dependent upon the nature of the processes being

used and the operating system, or lack of one, underlying the B l i s s program.

As a consequence, no syntax fo r dealing with e i t h e r problem i s included i n

the language; in any case, the amount of code necessary for these facillities

is quite small.

The co-routine user is well advised to read and understand the material

on the run-time representation of Bliss programs contained in section ICV.

3.1 Declarations

A11 declarations, except MAP and SWITCH, introduce names each of

which is unique to the block in which the declaration appears. Except

with STRUCTURE and MACRO declarations, the name introduced has a pointer

bound to it.

me declarations are:

declaration functiondeclaration(s truc turedeclaration1

binddeclarationlmacrodeclarat ion1

allocationdeclaration 1 mapdeclaration

Before proceeding with a detailed discussion of the declarations

we shall give an intuitive overview of the effect of these declarations.

3.1 , l Storage (an i n t roduc t ion)

A B l i s s program ope ra t e s with and on a number of s t o r a g e segment^'^.

A s t o r a g e segment c o n s i s t s of a f i xed and f i n i t e number of "words", each

of which i s composed of a f i xed and f i n i t e number of "b i t s " (36 f o r the

PDP-10). Any contiguous s e t of b i t s w i t h i n a word i s c a l l e d a "fieldI1.

Any f i e l d may be "named", t h e value of a name i s c a l l e d a "pointerIt t o

t h a t f i e l d . I n p a r t i c u l a r , an e n t i r e word i s a f i e l d and may be named.

I n p r a c t i c e a segment gene ra l l y conta ins e i t h e r program o r d a t a ,

and i f t h e l a t t e r , i t i s gene ra l l y f n t e g e r numbers, f l o a t i n g p o i n t numbers,

c h a r a c t e r s , o r p o i n t e r s t o o t h e r da t a . To a Bliss program, however, a

f i e l d merely con ta in s a p a t t e r n of b i t s .

Segments a r e introduced i n t o a Bliss program by d e c l a r a t i o n s , c a l l e d

a l l o c a t i o n d e c l a r a t i o n s , f o r example:

g loba l g;

own x ,y [51, 2; -
l o c a l p [loo] ;

r e g i s t e r r l , r 2 [3] ;

func t ion f (a , b) = . a t .b ;

Each of t h e s e d e c l a r a t i o n s in t roduces one o r more segments and b inds t h e

i d e n t i f i e r s mentioned (e -g . , g , x, y , e tc .) t o t h e name of t h e f i r s t

word of t h e a s s o c i a t e d segment. (The func t ion d e c l a r a t i o n a l s o i n i t i a l i z e s

t h e segment named "f t l t o t h e app rop r i a t e machine code.)

The segments introduced by these d e c l a r a t i o n s con ta in one o r more

words, where t h e s i z e may be s p e c i f i e d (as i n " loca l p[100]"), o r de fau l t ed

t o one (a s i n "global g;"). The i d e n t i f i e r s introduced by a dec1arat:ion

are lexically local to the block in which the declaration is made (that

is, they obey the usual Algol scope rules) with one exception - namely,
"global" identifiers are made available to other, separately compiled

modules. Segments created by own, global, and function declarations are

created only once and are preserved for the duration of the execution of

a program. Segments created by local and register declarations are, created

at the time of block entry and are preserved only for the duration of the

execution of that block. Register segments differ from local segments only

in that they are allocated from the machine's array of 16 general purpose

(fast) registers. Re-entry of a block before it is exited (by recursive

function calls, for example) behaves as in Algol, that is, local and

register segments are dynamically local to each incarnation of the block.

There are two additional declarations whose effect is to bind identi-

fiers to names, but which do not create segments; examples are:

external s;

b ind - y2 = y+2, pa = p+.a;

An external declaration binds one or more identifiers to the names

represented by the same identifier declared ~lobal in another, separately

compiled module, The bind - declaration binds one or more identifiers to
the value of an expression at block entry time. At least potentially the

value of this expression may not be calculable until run time - as in
'pa = p+.a ' above.

3.1.2 Data Structures (an introduction)

Two principles were followed in the design of the data etructure

facility of Bliss:

- the user must be able to specify the accessing algorithm
for elements of a structure,

- the representational specification and the specification
of algorithms which operate on the information represented

must be separated in such a way that either can be modified

without affecting the other,

The definition of a class of structures, that is, of an accessii~g

algorithms to be associated with certain specific data structures, may be

made b> a declaration of somewhat the following form:

structure <name>[<formal parameter list>] = E

Particular names may then be associated with a structure class, that is

with an accessing algorithm, by another declaration of somewhat the form:

Consider the following example:

begin

structure ary2 [i, j] = (.ary2+(.iW1)*10+(. j-1)) ;

own x[lOO],y[10O],z[100]; -
map ary2 x : y : z ;

end :

In t h i s example we introduce a very simple s t r u c t u r e , ary2, f o r two dimen-

s iona l (10x10) a r r a y s , dec l a re t h r e e segments wi th names ' x ' , 'y', and

'2' bound t o them, and a s s o c i a t e the s t r u c t u r e c l a s s ' a ry2 ' wi th t hese

names. The s y n t a c t i c forms "x[E1, $1'' and "y[%, $1'' a r e v a l i d w i th in

t h i s block and denote eva lua t ion of t h e access ing a1,gorithm def ined by t h e

a ry2 - s t ruc tu re d e c l a r a t i o n (with an appropr i a t e s u b s t i t u t i o n of a c t u a l f o r

formal parameters).

Although they a r e not implemented i n t h i s way, f o r purposes of exposi-

t i o n one may th ink of t he s t r u c t u r e d e c l a r a t i o n a s de f in ing a func t ion wi th

one more formal parameter than i s e x p l i c i t l y mentioned. For example, t he

s t r u c t u r e d e c l a r a t i o n i n t h e previous example,

s t r u c t u r e ary2 [i, j] = (. ary2+(, i-l)*lO+(, j-1)) ;

conceptual ly i s i d e n t i c a l t o a func t ion d e c l a r a t i o n

func t ion ary2 (f O Y f l , f 2) = (. f~+(. f l -1)*10+(. f2-1)) ;

The expressions "x[.a, .b]" and "y[.b, .a]" correspond t o c a l l s on t h i s

func t ion - i. e . , t o "ary2 (x, . a , . b)" and "ary2 (y , . b y . a)".

Since, i n a s t r u c t u r e d e c l a r a t i o n , t h e r e i s an i m p l i c i t , un-named

formal parameter, t h e name of t he s t r u c t u r e c l a s s i t s e l f i s used t o denote

t h i s "zero-th" parameter. This convention maintains the p o s i t i o n a l cor -

respondence of a c t u a l s and formals. Thus, i n t h e example above, ".ary2"

denotes the value of t h e name of the p a r t i c u l a r segment being referenced,

and 'x [.a , .b I1 i s equiva len t to :

The value of t h i s expression i s a po in te r t o the designated element of

the segment named by x.

In the following example the s t r u c t u r e f a c i l i t y and bind dec la ra t ion
10

have been used t o encode a mat r ix product (z = C xikykJ). In t h e
i ' j ,,

inner block the names ' x r ' and 'yc ' a r e bound t o po in te r s t o t h e base of

a spec i f i ed row of x and column of y respec t ive ly . These i d e n t i f i e r s

a r e then assoc ia ted with s t r u c t u r e c l a s s e s which allow one-dimensional

access.

begin

s t r u c t u r e ary2 [i, j] = (.aryZ+(.i-l)*lO+.(. j - I)) ,

own -
co l [j] = (.col+(. j-l)*lO) ;

m a p ary2 x:y:z; .
i n c r i from 1 to 10 do -

begin bind x r = x [. i , l] , zr = z [.L , l] ; map row x r : z r ;

i n c r j from 1 to 10 do - -
begin

r e g i s t e r t ; bind yc=y[l , . j]; map c01 yc;

t +- 0;

i n c r k from 1 t o 10 t 4- .t+.xr[.k]*.yc[.k]; - - -
z r [. j] .- . t ;

end :

end -'

end -

3.1.3 The Actual Declaration Syntax

The evample declarations in the preceding two sub-sections are valid

Bliss syntax; however, they do not reflect the complete power of the

declarative facilities. The following sections (3.2 - 3.5) are definitive

presentations of the actual syntax and semantics of these declarations.

The actual declarations presented in the following sections differ from

the examples given previously in that they admit greater interaction

between the allocation declarations and structure declarations.

3.2 Memory Allocation

There are five basic forms of allocation declaration:

allocation declaration -+ allocatetype msidlist

allocatetype -+ GLOBAL^ REGISTERIOWNI LOCALIEXTERNAL

msidlis t + msidelement 1 msidelement , msidlis t
msidelement -+ structure sizedchunks

structure -+ I structurename
sizedchunks + sizedchunk (sizedchunk: sizedchunks
sizechunk -r idchunkl idchunk [elist]

idchunk + name 1 name: idchunk

As with most other declarations, the allocat-ion declarations

introduce names whose scope is the block in which the declarations occur.

REGISTER and LOCAL declarations cause allocation of storage at each block

entry (including recursive and quasi-parallel ones), and corresponding

de-allocation on block exit. Storage for OWN and GLOBAL declarations is

made once (before execution begins) and remains allocated during the

entire execution of the program. EXTERNAL declarations do not allocate

storage, but cause a linkage to be established to storage declared with

the same name in a GLOBAL declaration of another module. Space for

allocation is taken from core for LOCAL, OWN, and GLOBAL declarations,

and from the machine's high speed registers for REGISTER declarations.

The initial contents of allocated memory is not defined and should

not be presumed.

Each msidelement defines a set of identifiers and simultaneously

maps these identifiers onto a specified structure. (If the structure

part is empty, the default structure 'vector' is assumed, see section

3.5). Each sizedchunk allows, by interaction with the associated

structure of the msidelement, spec i f icat ion of the s i z e of the segment

t o be al located - and the values of the "undotted structure formals"

to be used i n accessing an instance of the structure (again, see 3 . 5) .

3.3 Map Declaration

map declaration -, MAP msidlist

The map declaration is syntactically and semantically similar to

an allocation declaration except that no new storage or identifiers are

introduced. The purpose of the map declaration is to permit re-definition

of the structure and elist information associated with an identifier (or

set of identifiers) for the scope of the block in which the map declaration

occurs.

3.4 Bind Declarations

bind declaration 4 BIND equivalencelist

equivalencelist * equivalence I equivalence, equivalencelist
equivalence -+ msidelement = e

A bind declaration introduces a new g e t of names whose scope is the

block in which the bind declaration occurs, and binds the value of these

names to the value of the associated expressions at the time that the

block is entered. Note that these expressions need not evaluate at

compile time.

3.5 Structures

structure declaration -, STRUCTURE name structureformallist = st:ructuresize "1
structureformallist + ([namelist]

structuresize -+ ([e2]

Structure declarations serve to define a class of data structures

by defining an explicit "access algorithm", e to be used in accessing
1'

elements of that structure. The class of structures introduced by such

a declaration is given a name which may be used as the structure name in

an allocation declaration or map declaration.

The names in the structure formal list are formal parameter identifiers

which are used in two distinct ways:

1. "dotted" occurrences of the formal names positionally correlate

with the values of elist elements at the site of a structure

access. (Recall that a structure access is syntactically

pl -+ name [elist] .) These are referred to as "access formals"

and "access actuals" respectively.

2. "undotted" occurrences of the formal names positionally correlate

with the Values of the elist elements at the site of the declara-

tion which associated the variable name with the structure

class. These are referred to as "incarnation formals" and

"incarnation actuals" respectively.

In addition to the explicit formal names, the structure name, in "dotted"

form, is used as an access formal to denote the name of the specific:

segment being accessed (that is, to denote the pointer to the base of

the segment).

If present, the structure size, i.e., [el, is used to calculate

(from the incarnation actuals) the size of the segment to be allocated

by an allocation declaration. After substitution of incarnation actuals,

this expression must evaluate to a constant at compile time.

The simple example of a two-dimensional array given in section 3.1.2

might now be written:

begin

structure ary2[i,j] = [i*j](.ary2+(.i-l)*j3.(.j-l));

own ary2 x:y:z[10,10]; - .

end:

The default structure VECTOR, mentioned in section 3.2 is defined by

structure vector [i] = [i] (.vector + .i);

If defaulted, the size part of a structure declaration is defaulted

to the product of the incarnation actuals.

3 . 6 Functions

func t ion d e c l a r a t i o n FUNCTION name (namelist) = e 1
FUNCTION name = e I
ROUTINE name(name1ist) = e 1
ROUTINE name = e

The FUNCTION and ROUTINE dec la ra t ions de f ine the name t o be t h a t of a poten-

t i a l l y r ecu r s ive and r e -en t r an t func t ion whose va lue i s the expression e.

The syntax of a normal subrout ine- l ike func t ion c a l l i s

pl + pl (e l i s t) I pl ()

e l i s t + e I e l i s t , e

where p l i s a primary expression. Clear ly , pl must eva lua te t o a name which

has been declared a s a FUNCTION or ROUTINE e i t h e r a t compile time or at run

time. The names i n t he namelis t of t he dec l a ra t ion de f ine (l e x i c a l l y l oca l)

t h e names of formal parameters whose a c t u a l values on each inca rna t ion a r e d e t e r -

mined by the e l i s t a t the c a l l s i t e . A l l parameters a r e i m p l i c i t l y Algol

"call-by-value"; bu t n o t i c e t h a t cal l -by-reference i s achieved by simply pre-

s en t ing po in t e r va lues a t t he c a l l s i t e . Parentheses a r e requi red a t the c a l l

s i t e even f o r a ROUTINE or a FUNCTION wi th no formal parameters s ince t h e name

on i t s own i s simply a po in t e r t o t h e func t ion or rou t ine . Ex t r a a c t u a l para-

meters a b w e the number mentioned i n t he namelis t of t he func t ion (or rou t ine)

d e c l a r a t i o n a r e always allowed; however, too few a c t u a l parameters can cause

Jc
erroneous r e s u l t s a t run time. A ROUTINE d i f f e r s from a FUNCTION i n having an

abbreviated and hence f a s t e r prolog. Res t r i c t i on : a r o u t i n e may not r e f e r

d i r e c t l y t o l o c a l v a r i a b l e s declared ou t s ide i t , nor may i t c a l l a FUNCTION.

*
Note: I f e x t r a parameters a r e presented, and say, n ate expected, then t h e

0
r ightmost n a c t u a l w i l l correspond t o the formal parameters. See s e c t i o n I V

f o r d e t a i l s of t he access mechanism.

funct ion dec la ra t ion -1 GLOBAL ROUTINE name (namelist) = e (

GLOBAL ROUTINE name = e

A ROUTINE name i s l i k e an OWN name i n t h a t i t s scope i s l imi t ed t o the block

i n which i t i s declared and i t s value i s a l ready i n i t i a l i z e d a t block ent ry .

The p r e f i x GLOBAL changes t h e scope of t h e ROUTINE t o t h a t of the outer

block of t h e program enveloping a l l the modul.es, Note t h a t t h i s i n h i b i t s

a GLOBAL ROUTINE from access t o REGISTER names declared outs ide it. This i s

i n add i t ion t o the other l i m i t a t i o n s of ROUTINES c i t e d on the previous page,

Functions and rou t ines may a l s o be ac t iva t ed a s co-rout ines and/or

asynchronous processes, and indeed, the body of a s i n g l e funct ion may be

used i n .any or a l l of these modes simultaneously. (See 2 . 3 . 6 .)

funct ion d e c l a r a t i o n -, FORWARD nameparl is t

namepar l i s t + namepar I namepar l i s t , namepar

namepar +name (e)

>k
FORWARD'S t e l l t h e compiler how many parameters, given by e , a r e ex-

pected by an undeclared funct ion (or rou t ine) name which w i l l be declared

l a t e r i n t h e cu r ren t block. The compiler permits t h e number of a c t u a l

parameters i n a funct ion (or rout ine) c a l l t o be g r e a t e r than or equal t o

t h e number of formals declared.

*
Clear ly e must eva lua te t o a constant a t compile time.

3.7 Simple Macros

A limited macro facility is provided to improve the usability,of the

language. This facility provides simple replacement of a macro keyword

(and arguments) by a suitably defined string (with appropriate actual string

substitution for the formal parameters). Nested macro calls are permitted.

Recursive macro calls and nested macro definitions are not permitted.

macrodeclaration -, MACRO macdefinitionlist

macdef initionlist + macdef inition I
macdef initionlist, macdef inition

macdefinition + name (namelist) = stringwithout$ $ I 1

namep = stringwithout? $

The stringwithout$ is scanned for occurrences of atoms that match elements

of the namelist (if any). The first $ terminates the macdefinition without

except ion.

macrocall + name (balancedstringlist) I 1

name 2

balancedstringlist -. balancedstring I
balancedstringlist, balancedstring

A balancedstring is any string for which the number of right brackets

(11 (t l , 1s [t l , or I 1 11 <) in the string equals or exceeds the number of corres-

ponding left brackets. This includes the null string. A balancedstring

is1 associated with the formal parameter in the corresponding ordinal

position in the macdefinition.

Note t h a t

1. "Extrau balancedstr ings w i l l be simply ignored, but parsed

a s described above.

2. Null balancedstr ings a r e accepted.

3. m e macrocall may present fewer ba lanceds t r ings than the

macrodefini t ion, i n which case the n u l l s t r i n g w i l l be used f o r

t he "missing" arguments.

4. A macrocall must have a b a l a n c e d s t r i n g l i s t i f t he macrodefini t ion

had a namelist .

The expanded s t r i n g from a macro rep laces the macrocall i n the program

p r i o r t o l e x i c a l processing and scanning resumes a t t he head of t h i s s t r i n g .

Hence macrocalls may be nested. Indeed, p a r t s of a "nested" c a l l may come .

from the a c t u a l parameter(s) of the containing macro, from the body of the

containing macro o r even from the t e x t following the containing macro.

A s with o the r dec la ra t ions , macros have a scope given by the block

i n which they a r e defined - with t h i s exception: Any macro being expanded

a t t he end of a block w i l l , i n e f f e c t , be purged but i t s expansion w i l l run

t o completion. This might occur, f o r example, i f a macro contained an END a s i n :

BEGIN

MACRO qQSV = END B + "TQ" $;

QQSV

END

This may lead t o anomolous behavior depending on t h e s p e c i f i c program.

Macros may be used t o provide names t o b i t fields s o as t o improve

r e a d a b i l i t y .

MACRO EXPONENT = 27,8 $;
MACRO MANTISSA = 0,27 $;
MACRO SIGN = 35, l $;
LOCAL X ;
X <SIGN> t 0; X aXPONENT> t 27 ; X W N T I S S A > t. .I ;

Macros may be used t o extend the syntax in a l imi t ed way.

MACRO NEG = 0 GTR $;
MACRO UNLESS(X) = IF NOT(X) $;

Macros may be used t o e f f e c t i n - l i n e coding of a func t ion .

MACRO ABS (x) = BEGIN REGISTER TEMP;
IF NEG(TEMP + X) THEN - .TEMP ELSE .TEMP END $;

! HER.E THE ACTUAL PARAMETER SUBSTITUTED FOR X MAY NOT INCLUDE THE
: NAME TEMP.

11. SPECLAL LANGUAGE FEATURES

The previous chapter descr ibes t h e bas ic f ea tu res of the BLISS

language. I n t h i s chapter we descr ibe add i t iona l f e a t u r e s which a r e

highly machine and itnplementation dependent.

1.1 Special Functions

' A number of f ea tu res have been added t o the bas i c BLISS language which

allow g r e a t e r access t o the PDP-10 hardware fea tures . These f ea tu res have

the s y n t a c t i c form of funct ion c a l l s and a r e thus r e fe r red t:o a s "specia l

functions". Code f o r spec ia l funct ions i s always generated i n l i n e .

1.2 Fharacter Manipulation Functions

Nine funct ions have been spec i f i ed t o f a c i l i t a t e charac ter manipula-

t i o n operat ions, They are:

scann (ap) CopYnn (apl, ap2)

scan i (ap) copyni (W1, ap2)

rep lacen (ap, E) copyin (apl, ap7) -
r e p l a c e i (ap, E) copyi i (apl , ap2)

incp (ap)

For each of these E i s an a r b i t r a r y expression, and ap i s an expression

whose Oalue i s a po in te r t o a poin ter . The second of these po in te r s i s assumed

t o po in t t o a charac ter i n a s t r i n g .

scann (ap) i s a funct ion whose va lue i s the cha rac te r from the
s t r i n g .

s can i (ap) i s l i k e scann except t h a t , a s a s ide e f f e c t , the
s t r i n g poin ter i s s e t t o po in t a t t he next cha rac te r
of the s t r i n g before the cha rac te r i s scanned.

rep lacen (ap, €) i s a funct ion whose value i s E and which, a s a s i d e
e f f e c t , rep laces the s t r i n g charac ter by E.

r e p l a c e i (ap, E) i s s i m i l a r t o replacen except t h a t t he s t r i n g poin ter
i s s e t t o po in t a t the next cha rac te r of the s t r i n g
before the value of E i s s tored .

copynn (apl, ap2) these funct ions a r e s imi l a r i n t h a t they each e f f e c t
copyni (apl , ap2) a copy of one charac ter from a source s t r i n g (pointed
copyin (apl, ap2) a t by .ap,) t o a d e s t i n a t i o n s t r i n g (pointed a t by .ap2)
copy i i (apl, ap2) and have a s value the charac ter copied. They d i f f e r

i n t h a t copynn advances ne i the r p o i n t e r , h i l e copyni
advances .ap , copyin advances .ap , and copy i i advances 2 1
both. I n each case t h e po in te r i s advanced before the
copy i s e f f ec t ed .

advances .ap t o the next cha rac te r

Suppose that a string (of 7 b i t ASCII characters) i s stored i n memory

beginning a t location S . The string i s terminated by a nul l (zero)

character. The following skeletal code w i l l transform i t i n t o a 6-bit

str ing with blanks deleted:

begin

register p 7 , p6 , c ;

p7 t- (s-1) a, ir); p6 4- (s-1) <0,6>;

while (c c scani (p7)) neq 0 do

if .c neq " " then replacei (p6, .c); - -

1.3 Machine Language

It i s pos s ib l e t o i n s e r t PDP-10 machine language i n s t r u c t i o n s i n t o a

B l i s s program i n t h e s y n t a c t i c form of a s p e c i a l f unc t ion

OP (5 , 5, (5, E4)

where

op i s one of the PDP-10 machine language' mnemonics (see t a b l e
below).

El i s an express ion whose l e a s t s i g n i f i c a n t 4 b i t s w i l l become
t h e accumulator (A) f i e l d of t h e compiled i n s t r u c t i o n .
This express ion must y i e l d a va lue a t conzpile time of a
dec la red r e g i s t e r name or a l i t e r a l .

E2 i s an express ion whose l e a s t s i g n i f i c a n t 18 b i t s w i l l
becane the address (Y) f i e l d of the compiled i n s t r u c t i o n .

E3 i s an express ion whose l e a s t s i g n i f i c a n t 4 b i t s w i l l become
the index (x) f i e l d of t he compiled i n s t r u c t i o n .

E4 i s an expression whose l e a s t s i g n i f i c a n t b i t w i l l become
t h e i n d i r e c t (I) b i t of the compiled i n s t r u c t i o n , 0

(A t a b l e of machine language i n s t r u c t i o n mnemonics fol lows. Defau l t s f o r a r e 0.)

The 'value ' of these machine language i n s t r u c t i o n s i s uniformly taken

t o be t h e con ten t s of t h e r e g i s t e r s p e c i f i e d i n t he accumulator (A) f i e l d

of t h e i n s t r u c t i o n . his makes l i t t l e sense i n a few cases , bu t was

adopted f o r uniformity .)

I n order f o r t h e compiler t o conserve space dur ing compilat ion, t h e

mnemonics f o r t he machine language opera tors a r e not normally preloaded

i n t o t h e symbol t ab l e . Therefore, i n order t o use t h i s f e a t u r e of t he

language, i t i s necessary f o r the programmer t o inc lude one of t h e follow-

i n g s p e c i a l d e c l a r a t i o n s

d e c l a r a t i o n +MACHOP mlist 1 ALLM&HOP

mlist + name = e (m l i s t , name = e

i n the head of a block which embraces occurrences of t he se s p e c i a l func t ions , 0

(Note: The e's in anmlist must be the high order nine bits of the actual

values of the machine operation and must evaluate at compile time.) Symbol

table space for these names is released when the block in which the declara-

tion occurs is exited.

NOTE: The description of fields $, 5, (4 needs same simplification in -
the case where 3 is a name. The compiler attempts to produce a single

instruction for the machine language expression whenever possible. For

example, consider the expression MOVEM(~,A) where A is a local variable.

The compiler, noting that the index register has been defaulted to zero,

produces a 22 bit address using the F register for the index register field

of the instruction.

*
PDP-10 Instruction Mnemonic Table

n -- .

- ------ ..---... - .-

l o I (. A

1 1

t t , !Iel~lury
tc) Self

B h c k Transfer

EXCHnnge AC and meriiory

- ---U

A1111
SUlJtracr
M U L t ~ p l y
I~ltegcl kIU Lt ply
111 Vidc.
111 tcger 111 Vide

t o I l O t l l

Floatitlg Adl)
F'oatir\g Sr~Btract
Floating Mult iPly to Menlory
Roa t ilig Divide to Both

use present poirltcr Loall Byte into ACT

Increment pointer
) and (

Deposit Byte in nicluory

set masked bits to Zcros and skip if all masked bits Equal 0

Right with E set masked bits t o Oiws if Not all masked bits equal 0
htf with s Conlple~nen t, masked bits

9c
Reproduced with pekmission of Digital Equipment Corporation from the PDP-10
Reference Handbook.

I

r

Floating Scale

Doublc Floating Ncgatc

Unriormalized Flo:~ ting Add

Arithmetic SHift -
Logical SHift
ROTate

r

Increment Byte Pointer

PUSH 1 (z d Jump POP UQ

with Complement of Ac

Complements of Both

Inclusive OR I exclusive OR
EQui Valence

never
SKIP if memory

:yz:: Subtract One from ' y] [$: a L r E q u a l AC and Jump Always

Immediate Greater
compare AC (with Mernory

and skip if A(' Greater or Equal
Not equal

Add One to Both halves of AC and Jump i f

with Direct mask No modification

Jump'

'to SubRoutine
and Save PC
and Save Ac
and Restore Ac
if Fitid First One
on Flag and CLear it
on Overflow (JFCL 10,)
on CaRrY 0 (JFCL 4,)
on CaRrY 1 (JFCL 2,)
on CaRrY (JFCL 6,)
on Floating Overflow (JFCL 1 ,)
and ReSTorc
and ReSTore Flags (JKST 2 ,)

,and ENable 1'1 channel (JRST 12.)

HALT (JRST 4,)

, eXeCuTe

In
Out

CONdit ions all masked bits Zero
in and Skip if (some masked bit One

never

1.4 compilat ion Control

The a c t i o n s of t he compiler with r e spec t t o a program may be

cont ro l led by s p e c i f i c a t i o n s a) i n t he i n i t i a l input s t r i n g from a TTY,

b) i n the module head, c) by a s p e c i a l SWXTCHES dec la ra t ion . Not a l l

a c t i o n s can be con t ro l l ed from each of t hese p laces , bu t many can.

Some a c t i o n s once spec i f i ed have a permanent e f f e c t (such as whether t o

c r e a t e a high segment o r low segment program) whi le t he e f f e c t of o t h e r s

can be modified (such as l i s t i n g con t ro l) . The t a b l e i n s e c t i o n 1.4.4

g ives a l i s t of var ious compiler ac t ions and t h e assoc ia ted switch and/or

source language cons t ruc ts which modify those ac t ions . This l i s t i s

sub jec t t o change.

1.4.1 Command Syntax

The general format of the initial command to Bliss is:

objdev: file.ext,lstdev:file.ext t sorcdev:file.ext,..~,sorcdev:file.ext

The "ob jdev: file.extU and/or "lstdev: file.extU may be omitted with the

implication that the corresponding file is not to be generated, The

".extl' may be omitted on any of the file specifications and the following

defaults assumed:

object file: REL

listing file: LST

source file: BLZ

As with DEC CUSP'S, switches of the form /x (x=A,B, . . . ,Z) may be placed
anywhere in a camrmand string,

1.4.2 Module Head

A s explained i n 1.1.1 the syntax f o r a module i s

module -, MODULE name(parameters) = e ELUDCM

The 'parameters ' f i e l d may contain various information which w i l l a f f e c t

t he compiler 's ac t ion with respect t o the current program. The syntax

of t h i s f i e l d i s

parameters -r parameter 1 parameter ,parameters

. The allowed forms of 'parameter ' a r e given i n tabular form i n sec t ion

11.1.4.4 under the column headed "module head syntax".

1.4.3 SWITCHES Declaration

declaration -, SWITCHES switch list

switch list 4 switch I switch, switch list

The SWITCHES declaration allows the user to set various switches

which control the compiler's actions. The effect of a SWITCHES declara-

tion is limited to the scope of the block in which the declaration is

made. The various allowed forms of 'switch' are given in tabular form

in section 11.1.4.4 under the column headed "SWITCHES DECLARATION".

1.4.4 Actions

MODULE HEAD
SYNTAX

LIST

NOLIST

NOERS

MLIST

HISEG

INSPECT

NOINSPECT

-

SYNTAX

' SWITCHES '
DECLARATION

LIST

NOLIST

NOERS

MLIST

-.

INSPECT

NOINSPECT

9

ACTION

Enable I i - s t i ng of t h e source t e x t .
This switch i s assumed t r u e i n i t i - -
a l l y .

Disable l i s t i n g s f t he source t e x t .

Do no t p r i n t e r r o r messages on
t h e TTY.

Enable l i s t i n g of t he machine
code generated.

Make t h i s module a highsegment
module. I n i t i a l l y modules a r e
assumed t o be two segments.

When t r u e t h i s switch w i l l cause
a s p e c i a l word t o be emit ted ,

immediately p r i o r t o each func t ion
o r r o u t i n e body. This word conta ins
information t o f a c i l i t a t e a SIMULA-
l i k e in spec t ion mechanism (see
IV.1.4). The d e f a u l t i n i t i a l value
of t h i s switch i s f a l s e .

This s e t s t h e in spec t ion switch
f a l s e .

Enable l i s t i n g of c o m p i 1 e r . s t a t i s t i c s .
Information r e l evan t t o t h e imple-
mentat ion w i l l be p r in t ed a t the end
of compilation.

Syntax check only! No code w i l l
be generated - t h i s speeds t h e
compilat ion process and i s the re -
f o r e u se fu l dur ing t h e i n i t i a l
s t ages of program development.

'e ' s p e c i f i e s t h e number of
'dec la red1- type r e g i s t e r s t o be
used. Unless s p e c i f i e d t h i s value
is de fau l t ed ' to a small number .
(t h r e e a t t h e time of t h i s wr i t i ng) .

MODULE HEAD ' SW 'ITCHES ' Ei%p (SYNTAX ACT1 ON

OPTIMIZE

NOOPTIMIZE

EXPAND

NOEXPAND

SREG = e
VREG = e
BREG = e
FREG = -e

NORSAVE
RSAVE

LOSEG

NOOPTIMIZE

EXPAND

NOEXPAND

NORSAVE
RSAVE

LOSEG

Registers with absolute names
el, ..., e are reserved (usually
for inteQ-module comnunication).

Because of the possibility of
computed addresses in Bliss
programs, it is not possible
for the compiler to determine
whether optimization of sub-
expressions is possible.across
1 t . 1 1 ,

I s in a compound expression.
Therefore the compiler operates
in two modes - one in which it
does optimize such common sub-
expressions and one in which
it does not. When the 'optimize'
switch is true the compiler -
attempts to optimize across a
'I;". ?he default mode is for
the switch to be true.

Sets the optimization switch
(see above) to false.

Give trace of macro expansions.

Turn off trace of macro expansion.
This is default initial state.

? The user may use these to choose
specific registers to be used as
the S, V, B, and F, respectively.

Print a cross-reference to all
identifiers at the end of compilation
(assumes a listing is being printed).

The compiler normally generates code
to save all declarable registers
around an EXCHJ operation. This
default may be overriden by a /R,
or NORSAVE. RSAVE reverts to the
default.

Force entire compilation into the
low segment.

MODULE HEAD
SYNTAX

STACK
(see t e x t a t
r i g h t)

ENTRIES - (nl. . , nm)

' SWITCHES '
DECLARATION

-

ACTION

The syntax of t he module
head permits automatic a l -
l oca t ion and i n i t i a l i z a t i o n
of t he run-time stack. The
syntax i s

where

<explicit-stacb::=<stype
<s -name-sz>

<s t y p e : :=GLOBAL I OWN(EXTERNAL
<s-name-sz>: := (<IDXss-OPTW)
<ss -0PTD : :=/<li t e r a ~

The de£au l t s are

'STACK'= STACK=OWN(STACK~#~OOO)
' s~ACK(1i.t) '= STACK-OWN(STACK,lit)
etc.

A l l r o u t i n e names a r e forced t o
be ' g loba l ' .

An ' e n t r y ' block i s c rea t ed a t
t he beginning of t h e ',REL1 f i l e
f o r t h e names nl,n2,. . .n . These
names must subsequently $e declared
' g loba l ' i n the module. This per -

m i t s FUDGE2 t o be used t o c r e a t e
a l i b r a r y ,

1.1 Registers

The sixteen registers are divided into three main classes:

1. Reserved registers:

These registers are declared in the module head. Their scope

is the entire module and they may also be accessed from within any

global routine, They are never saved.

2, Bliss run-time registers:

After the reserved registers have been allocated, the lowest

four remaining addresses are assigned as the run-time registers.

In particular, if there are no reserved registers, 0 through 3 are

assigned as the S, B, F, and V registers respectively. The names

SREG, BREG, FREG, and VREG are available at the outermost blocks

of the module and, as in the case of reserved registers, these names

are accessible from within any global routine.

3. Temporary registers:

All the remaining registers fall into this class and are divided

into two subclasses:

a. savable:

These registers are used for declared registers,

control registers in incr-decr loops, and when necessary

for computing temporary values. Any of these registers

which are used in the body of a function or routine are

saved in the prolog and restored in the epilog. Of course

if F is not a global routine and F is within the scope of

IV. RUN TIME REPRESENTATION OF PROGRAMS

1.0 Introduction

In order to make the fullest possible use of Bliss, it is important

to understand the run-time environment in which Bliss programs run. The

address space is occupied by various types of information:

(1) program

(2) constants

(3) static size variable areas (globals and owns)

(4) stacks

Programs are 'pure' (they do not modify themselves) therefore program

and cohstant areas are placed in contiguous, write-protected regions

and may be shared (see the 'HIGSEG' switch declaration, section 11.1.4).

static variable storage and stack space are placed in readable/writable

memory. The key to understanding the run-time environment in the stack

configuration and register allocation is illustrated in Figure IV.l.

Each process (co-routine) has its own stack configured as shown in IV.1.

of register R, then R is not preserved. The user must

declare the s.ize of this block of registers in the module

head. (DREGS =) . These registers are allocated from the

highest addresses.

b. non-savable:

These axe the registers used for calculating inter-

mediate results. They are saved at the call site of a

function or routine only if they contain a needed result

and are never saved in the prolog or epilog.

Comments :

a. If one wishes to load a collection of Bliss modules together,

they must request precisely the same reserved registers and request the

same number of savable temporaries.

b. The two classes of temporary registers are managed quite differ-

ently in that the savable registers obey a stack discipline (t o minimize

saving and restoring) and the non-savable are used in round-robin fashion

(to lengthen the life of intermediate results). The present version

of the compiler requires a minimum of 4 non-savable registers--i.e., the

maximum value of DREGS = 8 - # of reserved regs. In general the compiler

can produce better code if DREGS is kept to the minimum value which the

lexical scope of declared registers and/or incr-decr loops allow.

1.2 The Stack and Functions

m e f i r s t 17, loca t ions of each s t ack are reserved f o r s t a t e informa-

c ion (r e g i s t e r s p l u s program counter) f o r a process when i t is inac t ive . The

use of these c e l l s i s explained more f u l l y i n 1.4. The conf igura t ion

above these 1 7 s t a t e words depends upon the depth of nes t ing of funct ion

c a l l s , bu t each such nested c a l l involves a s imi l a r (not ident ica l) ' use

of the s tack; Figure IV.1 i l l u s t r a t e s a typ ica l s t ack conf igura t ion

a f t e r s eve ra l nested funct ional c a l l s . A t a t i m e when one of these

funct ions i s executing

(1) m e S-regis te r po in t s t o the h ighes t assigned c e l l i n the

s t ack ; the S - reg i s t e r i s used t o c o n t r o l the a l l o c a t i o n

of the s t ack area .
>P

(2) The F - reg i s t e r po in t s t o the ' l o c a l base of s t a c k t ; below

the F - reg i s t e r a r e the parameters t o the funct ion and t h e

r e t u r n address. .The s t ack c e l l a c t u a l l y pointed t o by

the F-regis te r conta ins the previous value of the F - reg i s t e r .

a t the time a t which the cu r ren t funct ion was entered.

(3) .The c a l l i n g sequence which is used t o en te r a funct ion (or

rou t ine) i s

PUSH S,p, ; push 1 s t parameter onto the
s t ack

PUSH Ssp2 ; push 2nd parameter onto the
s t ack

PUSH Sspn ; push n t h parameter onto the
s t ack

PUSHJ S,FCN ; jump t o the c a l l e d funct ion

SUB S,[nooooon) ; d e l e t e the parameters

(4) Above the F-regis te r a r e s tored the "displays", D . . .D
1 f a

*'below1 i n .the sense of decreasing address values.

One display is used for each lexical nesting of the decla-

ration of the function which is currently executing. The

value of the displays are the F-register values for the

most recent recursive entries for the lexically embracing

functions. The displays are needed and used to access

variables global. to the current functions but local ta

embracing functions. Such access is prohibited in routines,

and consequently no displays are saved on a routine entry.

(5) Above the displays are saved any savable registers which

are destroyed by the execution of the function body,

These registers are restored before the function exits.

(6) Any local variables in the function are stored on top of

the saved regis ters. Space is acquiredldeleted for locals

on block entry/exit by s imply adding/ subtracting a constant

to the S-register. Some of these locals are automatically

generated by the compiler.

(7) An excessive number of declared registers, or the evaluation

of an unbelievably complex expression may exhaust the avail-

able registers, forcing the area above the locals to be used

for storing partial results of an expression evaluation.

(8) The V-register is used to return the value of the function

or routine.

Figure IV.2 illustrates the code generated surrounding the body of a func-

tion. The code surrounding a routine body is identical with the exception

that the displays are never saved, In this illustration the S, B, F, and

V registers are shown occupying physical registers 0-3. In practice other

registers may be chosen if these registers are reserved in the module head.

Figure IV.1

Stack S t r u c t u r e and Reg i s t e r s f o r a Process

Local Variables

Regis te r Save Area : I
N I h - l $ 1 * 1 . 4 * 1 - 4 + - * 1 e.sl-l

I

Display I :

mu-*---- d p r e v F r e g
+---.-w..--] I r e t u r n addr 1

Parameters

I

The s t a c k con- \ 1-1
f i g u r a t i o n shown r e t u r n a d d r rK2
above i s r e p e a t e 6 -1
f o r each nes ted -1

I t
c a l l . i I

IE -

Regis te r save 17

a r e a when process

i s i n a c t i v e I I

s t a t e i n f o f o r +-'---"-
i n a c t i v e pro- 2 1 PC /
cess " J.2~ Y

WASTE

Reg i s t e r s

Declared and

working r e g i s t e

S TAC I<

Figure IV.2

Function Prolog and Epi log

FCN: PUSH S,F ; save old F - r eg i s t e r

PUSH s , I (F) ; copy d i sp l ay zero
'l . . .

PUSH S, f (F) ; copy d i sp l ay f

HRRZ F,S ; s e t u p n e w F

POP S,R ; r e s t o r e r e g i s t e r
z

SUB1 F,E ; s u b t r a c t no. d i sp l ays

PUSH S,F ; new d i sp l ay c rea t ed

PUSH S,R, ; save r e g i s t e r

POP S,R, ; r e s t o r e r e g i s t e r

SUB S , [(£+1)001000 (f+l)] ; e l imina te d i sp l ays)

0 . . a * .

PUSH S,RZ ; save r e g i s t e r

BODY OF FUNCTION OR ROUTINE

J
POP S,F

POPJ S,

Generated

, For

Routines

Figure IV.3

Block Entry and E x i t

BENTER: MOVEM ; save in-use working r e g i s t e r s

MOVEM ; save in-use working r e g i s t e r s

ADD S ,[nOQOOOn] ; INCR S - r eg i s t e r by no. l o c a l s i n b l k

BEXIT : SUB S, [(n+j)ooooo(n+j)] ; DECR S- reg i s t e r by no. l o c a l s i n b l k

; (note: in-use reg?.s left i n s t ack ,

; re-loaded only when used)

1.3 Access t o Variables

This s e c t i o n b r i e f l y i nd ica t e s the mechanisms by which generated code

accesses var ious types of v a r i a b l e s (formals, owns and g loba l s , l o c a l s ,

e t c .) The exac t addressing scheme used by the canp i l e r i n any p a r t i c u l a r

case i s h ighly dependent upon the context ; however, t he foll.owing m a t e r i a l

should a i d i n understanding the o v e r a l l s t r a t egy .

(a) OWN and GLOBAL v a r i a b l e s are accessed directly.

(b) Formal parameters of t h e c u r r e n t rou t ine are accessed negat ive ly

wi th r e spec t t o the F - r eg i s t e r . I f the cu r r en t rou t ine has n

formals, then the i t h one i s addressed by

(-n + i - 2) (F)

(c) Local v a r i a b l e s of the cu r r en t rou t ine are accessed p o s i t i v e l y

with r e spec t t o the F - r eg i s t e r . To access the i t h l o c a l c e l l ,

one uses

(i + d + r + l) (F)

where d i s the number of d i sp l ays saved and r i s t h e number of

r e g i s t e r s saved on func t ion en t ry .

(d) Formal parameters and l o c a l v a r i a b l e s which a r e not declared i n

t h e c u r r e n t l y execut ing func t ion a r e accessed through the d l s -

play. The appropr ia te d i sp l ay i s copied i n t o one of t he working

r e g i s t e r s then accessed by indexing through t h a t r e g i s t e r i n a

manner s i m i l a r t o that shown i n (b) or (c) above.

The f i r s t four cha rac t e r s of t h e name introduced i n t h e module head

i s used t o name var ious regions i n the produced code. These names a r e

dec lared l lexternal" and the re fo re a v q i l a b l e i n DDT. I f 'XXXX' are the

IV, 1,3a

f i r s t four charac ters of t he module name, then

MUU[i s the loca t ion of t he f i r s t i n s t r u c t i o n i n t h e main
body of t h e module.

XXXX. F i s t h e loca t ion of t he " l i t e r a l " a rea which conta ins
cons tants generated by t h e compiler.

XXXX. 0 i s the loca t ion of t he "own" a rea i n which i s s tored
a l l va r i ab le s declared 'own' i n the module.

XXXX . G i s the loca t ion of t he "globalv a rea i n which is s tored
a l l va r i ab le s declared "global" i n the module.

XXXX, . i s the module name recognized by DOT.

XXXX. P i s t h e first l o c a t i o n of t h e " p l i t " area.

V. COMPILER IMPLEMENTATION

This table contains a description of the implementation of the Bliss

compiler. At every instant of time this section will necessarily be in-

complete and possibly erroneous. It will be extended and corrected as

time permits and the compiler changes.

The initial contents of the section is a set of diagrams of the major

tables in the compiler.

THE LITERAL TABLE

1
value

L-

1

r
I

I

i

LEXEME

LINKF
,

l i tera l
table
hashed
and
treated
as
circular

-.L

LS

I
I

1
t

\2" b

/

VE

NO
V E r O ? YES"

N value

0 i f value in next f ie ld
index into LT in next f i e l d

("big" l i terals only)

\
1 i f l i tera l

I
I
I

I I

,- - - - - . - -4OP6FTABLE = index o f l a s t c e l l a s s igned

unassigned and not on FSL

FSL = s e t of a r e a s l i nked
t oge the r such t h a t
0 t h c e l l con t a in s s i z e

I r o u t i n e RELEASESPACE l inks a r e a s i n t o FSL: of areab 1st c e i l
h a s l i n k t o next area,
(End of cha in has
0 l i nk ,)

I r o u t i n e . GETSPACE a s s i g n s a r e a s from FSL:
i -lip---''---- 1

G. Run down FSL; f o r each
free c e l l , mark c o r r e s -
ponding b i t i n AVL
(.

) - d m .
2. Check f o r ad j acen t marked

s (n p f y " ~ 'yes ' b i t s h o t l tnked i n as one
GARBAGE COLLECT ION a r e a ,

beyond I

Yes CALLEXECFORSPACE

space
a s s igned

3, Rebuild FSL, c o l l a p s i n g
ad j acen t a r e a s , - l I

FSL a f t e r GETSPACE:

..... ...-

Por t i on of FSL a f t e r
r ebu i ld ing ,

a s s ; n e d 1,
FREE SPACE LIST

The e n t i r e program is a l iqked l i s t , and is i t s e l f l inked ' to global variable PROGRAM:

Header I

- PROGRAM -

class f ie ld
)class (=type of code for header) if-then-else

I

HDR 12)subclass (=number of c e l l s t o t a l)

h 2

CODE

.

(example)
" i f .a then

.b e l se .c

, HDR

0 ---
HDR --
0 .

HDR
----.I-

0
I

HDR -
0

After processing, the above is equivalent to:

' ,,

s - t h e n - e l s e

1

i f -then-else .."....---
2

-.I(I<---U---

i f -then-else --..-.
3 -

1 _ - . -

-- -.---.-
4

HDR
0

.-

I -T -E Header

-
ITE ITE ITE ITE Subheaders

5

Subheader
c lass

,,-)initially the same
as header c lass f i e l d

)index (ie. , which item among
the subheaders)

if-then-else
5 -

changed to: I F THEN ELSE Label

CODE

After more processing, the above may change to:
i

I

- - -

Label Label

. . .and so on.

THE CODE TABLE

	Title
	Preface
	Table of Contents
	I. Language Definition
	II. Special Language Features
	IV. Run Time Representation of Programs
	V. Compiler Implementation
	Appendix A. Syntax
	Appendix B. Input-Output Codes
	Appendix C. Word Formats
	Appendix D. Bliss Error Messages

